Summary

Vorbereitung von Maus-Retinal-Cryo-Sektionen für die Immunhistochemie

Published: July 01, 2019
doi:

Summary

Dieser Bericht beschreibt umfassende Methoden zur Vorbereitung von gefrorenen Mausnetzteilen für die Immunhistochemie (IHC). Die beschriebenen Methoden umfassen die Zerlegung des okularen posterioren Bechers, die Paraformaldehydfixierung, die Einbettung in die Medien der optimalen Schnitttemperatur (OCT) und die Gewebeorientierung, die Schnitt- und Immunfärbung.

Abstract

Die Vorbereitung hochwertiger Mausaugenabschnitte für die Immunhistochemie (IHC) ist entscheidend für die Beurteilung der Netzhautstruktur und -funktion und für die Bestimmung der Mechanismen, die Netzhauterkrankungen zugrunde liegen. Die Aufrechterhaltung der strukturellen Integrität während der gesamten Gewebepräparation ist für die Gewinnung reproduzierbarer retinaler IHC-Daten von entscheidender Bedeutung, kann aber aufgrund der Fragilität und Komplexität der retinalen Zytoarchitektur eine Herausforderung darstellen. Starke Fixative wie 10% Formalin oder Bouins Lösung bewahren die Netzhautstruktur optimal, sie behindern oft die IHC-Analyse, indem sie die Hintergrundfluoreszenz und/oder die abnehmenden Antikörper-Epitop-Wechselwirkungen verbessern, ein Prozess, der als Epitopmaskierung bekannt ist. Milderfixative hingegen, wie 4% Paraformaldehyd, reduziert Die Hintergrundfluoreszenz und Epitopmaskierung, sorgfältige Seziertechniken müssen verwendet werden, um die Netzhautstruktur zu erhalten. In diesem Artikel stellen wir eine umfassende Methode zur Vorbereitung von Maus-Okularbechern für IHC vor, die ausreicht, um die meisten Antikörper-Epitop-Wechselwirkungen ohne Verlust der strukturellen Integrität der Netzhaut zu erhalten. Wir schließen repräsentative IHC mit Antikörpern gegen verschiedene Netzhautzelltypmarker ein, um die Gewebeerhaltung und -orientierung unter optimalen und suboptimalen Bedingungen zu veranschaulichen. Unser Ziel ist es, IHC-Studien der Netzhaut zu optimieren, indem wir ein komplettes Protokoll von der okularen hinteren Bechersektion bis zum IHC bereitstellen.

Introduction

Immunohistochemistry (IHC) ist eine leistungsfähige Technik zur Lokalisierung spezifischer Proteine und zellulärer Strukturen in Geweben in situ1,2,3. Ungeeignete Fixierungsmethoden und suboptimale Schnitte komplexer Gewebe können die Gewebestruktur stören, eine hohe Hintergrundfärbung erzeugen oder Antikörper-Epitop-Wechselwirkungen verringern, was zu Färbeartefakten und daraus resultierender Fehlinterpretation von IHC-Daten4. Da die Netzhaut des Wirbeltiers ein komplexes und hochorganisiertes neuronales Organ ist, das aus Schichten miteinander verbundener Photorezeptoren, Interneuroner und Ganglienzellen besteht, ist es sehr zerbrechlich und kann leicht während der Zerlegung und Schnitte gestört werden. Ein detailliertes, standardisiertes und validiertes Protokoll von der Mausaugensektion und -orientierung bis zur Immunfärbung wird dazu beitragen, IHC-Artefakte deutlich zu reduzieren, wodurch die Zuverlässigkeit der Ergebnisse erhöht und genauere Vergleichsdaten möglich sind. analyse.

Es gibt viele Protokolle für die Gewebevorbereitung für IHC, jedoch sind nicht alle für Netzhautgewebe geeignet. Starke Fixative wie 10% Formalin oder Bouin-Lösung bewahren die Netzhautstruktur während der Zerlegung und Schnittung5. Leider führen starke Fixative oft zur verstärkten Hintergrundfluoreszenz und Epitopmaskierung aufgrund der chemischen Modifikation von Epitopen6. Auf der anderen Seite können mildere Fixative, wie 4% Paraformaldehyd (PFA), einige dieser Artefakte lindern, erfordern aber eine sorgfältige Zerlegung und Schnitte, um die optimale Netzhautstruktur zu erhalten. PFA dringt schnell in Gewebe ein, aber Kreuz-Links-Proteine sehr langsam, wodurch das Risiko der Epitopmaskierung reduziert wird. Da die PFA-Inkubation in kurzer Zeit eine relativ milde Fixierung ist, benötigen Gewebe oft schnelles Einfrieren, um Antigene zu erhalten. Es ist wichtig, die Bildung von Eiskristallen beim Einfrieren des Gewebes zu vermeiden, da sie die Integrität von Zellen und Geweben verzerren und schädigen7.

Hier beschreiben wir detaillierte und standardisierte Protokolle für Sezieren, Fixierung und Kryoschutz von Maus-Okularbechern, die konsistente und zuverlässige IHC-Daten liefern.

Protocol

Alle hier beschriebenen Methoden wurden in strikter Übereinstimmung mit den Empfehlungen des National Institutes of Health Guide for the Care and Use of Laboratory Animals durchgeführt, der vom Institut für Labortierressourcen zur Verfügung gestellt wurde, und wurden von der Institutional Animal Care and Use Committee der University of Pennsylvania. Alle Werkzeuge und Geräte für die Methoden sind in Abbildung 1 dargestellt und in der Tabelle der Mate…

Representative Results

Um zu veranschaulichen, wie diese Protokolle eine optimale Netzhautkonservierung für IHC gewährleisten, untersuchten wir Netzhautabschnitte von P28 WT-Mäusen (C57BL/6N) mit Antikörpern gegen Rhodopsin (ein Photorezeptormarker)8, Glutaminsäure-Decarboxylase 65 (Gad65, eine Marker)9, Glutamin-Synthetase (GS, ein Müller-Zellmarker)10und Calbindin (ein horizontaler Zellmarker)11 (<strong clas…

Discussion

Maus Netzhaut-Sektion ist ein empfindlicher Prozess aufgrund der geringen Größe und Form der Mausaugen und die Fragilität der Netzhautgewebe. Auch wenn die Durchführung von qualitativ hochwertigen Sezierungen eine Frage der Praxis ist, ist es eine Notwendigkeit, mit einem detaillierten Protokoll effiziente Methoden und Tipps zu erhalten, um Netzhautabschnitte und IHC zu erhalten. Zusätzlich zu den hier beschriebenen Protokollen gibt es einige Tipps, die konsistente hochwertige Netzhautabschnitte ermöglichen, die f?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde durch Mittel des NIH (RO1-GMO97327) und der University Research Foundation (UPenn) unterstützt. Wir danken insbesondere Svetlana Savina für ihre Hilfe bei der Entwicklung des Immunhistochemie-Protokolls, Gordon Ruthel (University of Pennsylvania) und dem Penn Vet Imaging Core für die Unterstützung bei der Mikroskopie und Leslie King, Ph.D. für die kritische Lektüre dieses Manuskripts. .

Materials

6qt. Stainless Steel Beaker (185 x 218mm) Gilson  #MA-48 For liquid nitrogen (Figure 1E)
Aluminum foil 
Cauterizer  Bovie #AA01 To mark eye orientation (Figure 1A)
Curved forceps, Dumont #5/45 tweezers, 45-degrees bent  Electron Microscopy Sciences #72703-D For mouse eye enucleation and maintenance (Figure 1A)
Curved scissors, Vannas Spring Scissors – 2.5mm Cutting Edge  Fine Science Tools  #15002-08 To circumferentially cut the cornea (Figure 1B)
Dental wax-coated 35mm dissection dish For eye cup dissection (Figure 1C)
Dissecting microscope  Leica, Houston, USA  MZ12.5 High-performance stereomicroscope
Micro Knives – Plastic Handle  Fine Science Tools  #10315-12 To make a small incision at the burn mark (Figure 1A)
Pink dental wax  Electron Microscopy Sciences  #72660 For coating dissection dish
Slide Rack and Coverplate Ted Pella #36107 For retinal IHC (Figure 1G)
Stainless Steel Beaker (89 x 114mm) Gilson  #MA-40 For isopentane bath (Figure 1E)
Styrofoam box For insulated cooler
Thin forceps Dumont #5   Fine Science Tools  #11254-20 To remove the cornea and extract the lens (Figure 1B)
Tissue-Tek cryomold  (10mm x 10mm x 5mm) Electron Miscroscopy Sciences  #62534-10 Mold for OCT embedding
Buffers and Reagents Company Catalog Number Comments
Blocking solution 2% Normal Horse Serum, 1.5% Cold Fish skin Gelatin (at 40-50% in H2O, cat #G7765), 5% bovine serum albumin (cat #AK1391-0100) in permeabilization buffer.  
Gelvatol (anti-fading mounting media) Under the fume hood, dissolve 0.337g DABCO (Sigma cat #D2522-25G) in 10mL Fluoromount G (Fisher cat #OB100-01).  Adjust to pH 8-8.5 with 12N HCl (~ 5 drops).  Store in amber drop bottle at 4°C  (8). 
Hoechst 33342 1000x Stock Thermo Scientific #62249 1 mg/ml in PBS (1000x). Aliquot and store in dark, at 4°C for up to 1 year or at -20°C for long term storage. Prepare fresh  at 1 ug/mL (1x) 
Isopentane, 99%  GFS Chemicals #2961
Liquid Nitrogen
Paraformaldehyde (PFA) in PBS Electron Microscopy Sciences  #15710 Prepared fresh 4% PFA from 16% PFA stock. Store the remaining 16% PFA at 4°C in the dark. 
Permeabilization solution PBS + 0.25% Triton-X (AMRESCO cat #0694-1L) + 0.05% NaN3.  Prepare fresh.
Phosphate-buffered saline (PBS) Bioworld  #41620015-20 0.02 g/L KCl, 0.02 g/L KH2PO4, 0.8 g/L NaCl, 0.216 g/L Na2HPO4 , pH 7.4.  Prepared from 10x stock 
Sucrose solutions Fisher Scientific   #S-5-500 Dissolve the appropriate amount of sucrose in  37°C PBS (takes ~15 min to dissolve). May be stored for a few days at 4°C. 
Tissue-Tek OCT-compound  Sakura  #4583
Antibodies Company Catalog Number Comments
anti-calbindin Sigma-Aldrich C8666 To label horinzotal cells 
anti-GAD65 Chemicon AB5082 To label GABAergic amacrine cells
anti-GS BD Transduction 610517 To label Müller cells
anti-rhodopsin Millipore MAB5316 To label rods

References

  1. Coons, A. H. Labelled antigens and antibodies. Annual Review of Microbiology. 8, 333-352 (1954).
  2. Coons, A. H. Fluorescent antibodies as histochemical tools. Federation Proceedings. 10 (2), 558-559 (1951).
  3. Coons, A. H., Kaplan, M. H. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. Journal of Experimental Medicine. 91 (1), 1-13 (1950).
  4. Chatterjee, S. Artefacts in histopathology. Journal of Oral Maxillofacial Pathology. 18 (Suppl 1), S111-S116 (2014).
  5. Hartz, P. H. Frozen sections from Bouin-fixed material in histopathology. Stain Technology. 20, 113 (1945).
  6. Benerini Gatta, L., et al. Application of alternative fixatives to formalin in diagnostic pathology. European Journal of Histochemistry. 56 (2), e12 (2012).
  7. Tokuyasu, K. T. Application of cryoultramicrotomy to immunocytochemistry. Journal of Microscopy. 143 (Pt 2), 139-149 (1986).
  8. Imai, H., et al. Molecular properties of rhodopsin and rod function. Journal of Biological Chemistry. 282 (9), 6677-6684 (2007).
  9. Lee, J. W., Lim, M. Y., Park, Y. S., Park, S. J., Kim, I. B. Reexamination of Dopaminergic Amacrine Cells in the Rabbit Retina: Confocal Analysis with Double- and Triple-labeling Immunohistochemistry. Experimental Neurobiology. 26 (6), 329-338 (2017).
  10. Bringmann, A., Grosche, A., Pannicke, T., Reichenbach, A. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Muller) Cells. Frontiers in Endocrinology (Lausanne). 4, 48 (2013).
  11. Nakhai, H., et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development. 134 (6), 1151-1160 (2007).
  12. Applebury, M. L., et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron. 27 (3), 513-523 (2000).

Play Video

Citer Cet Article
Léger, H., Santana, E., Beltran, W. A., Luca, F. C. Preparation of Mouse Retinal Cryo-sections for Immunohistochemistry. J. Vis. Exp. (149), e59683, doi:10.3791/59683 (2019).

View Video