Summary

小鼠间间间禁食的代谢效应评估 2:1 间歇禁食

Published: November 27, 2019
doi:

Summary

本文描述了异热2:1间歇性禁食的详细方案,以保护和治疗野生型和ob/ob小鼠的肥胖和葡萄糖代谢受损。

Abstract

间歇性禁食(IF),一种涉及周期性能量限制的饮食干预,被认为具有许多益处和抵消代谢异常。到目前为止,已经记录了不同类型的国际直供模型,其禁食和喂食期不同。然而,解释结果具有挑战性,因为许多模型都涉及时间和卡路里限制策略的多因素贡献。例如,通常用作啮齿动物 IF 方案的隔天禁食模式可能导致喂养不足,这表明这种干预对健康的益处可能通过热量限制和禁食-再喂养周期进行调节。最近,已经成功地证明,2:1 IF,包括1天的禁食,然后2天的喂养,可以提供防止饮食引起的肥胖和代谢改善,而不减少总热量摄入。这里介绍的是这种等量2:1IF干预小鼠的协议。还描述了一个双喂食(PF)协议,需要检查小鼠模型与改变的饮食行为,如高吞咽。使用 2:1 IF 方案,证明等量IF可降低体重增加、改善葡萄糖平衡和增加能量消耗。因此,这种疗法可能有助于研究IF对各种疾病状况的健康影响。

Introduction

现代生活方式与更长的每日食物摄入时间和较短的禁食期1相关。这促成了当前的全球肥胖流行,代谢的劣势在人类身上出现。禁食在整个人类历史中一直实践,其多样化的健康益处包括延长寿命,减少氧化损伤,和优化能量平衡2,3。在几种练习禁食的方法中,定期能量剥夺,称为间歇性禁食(IF),是一种流行的饮食方法,由于其简单易行的疗养,被一般人广泛采用。最近对临床前和临床模型的研究表明,IF可以提供与长期禁食和热量限制相当的健康益处,这表明IF可以作为肥胖和代谢疾病2、3、4、5的潜在治疗策略。

IF方案在禁食持续时间和频率方面有所不同。隔天禁食(即1天喂食/1天禁食;1:1 IF)是啮齿动物最常用的IF疗法,以研究其对肥胖、心血管疾病、神经退行性疾病等有益的健康影响。然而,如先前研究6、7所示,在我们的能量摄入分析8,1:1IF导致喂养不足(+80%)中进一步确认由于缺乏足够的喂食时间来弥补能量损失。这使得不清楚1:1 IF所赋予的健康益处是通过限制卡路里还是改变饮食模式来调节的。因此,一个新的IF方案已经开发出来,并在这里显示,包括2天喂食/1天禁食(2:1 IF)模式,这为小鼠提供了足够的时间来补偿食物摄入量(+99%)和体重。然后,将这些小鼠与活动(AL)组进行比较。这种方案能够在野生型小鼠没有热量降低的情况下检查等热IF的影响。

相反,在显示反馈行为改变的小鼠模型中,AL 喂食可能不是比较和检查 2:1 IF 效果的适当控制条件。例如,由于ob/ob小鼠(一种常用的肥胖基因模型)由于缺乏瘦素调节食欲和饱口福而表现出吞咽困难,因此与使用 AL 喂养的ob/ob小鼠相比,2:1 IF 的小鼠表现出热量摄入减少 20%。因此,为了正确检查和比较在ob/ob小鼠中 IF 的影响,需要采用配对喂养组作为适当的对照组。

总体而言,提供了一个全面的协议来执行等分2:1 IF,包括使用对馈送控制。进一步证明,等热2:1 IF保护小鼠免受高脂肪饮食引起的肥胖和/或代谢功能障碍在野生型和ob/ob小鼠。该协议可用于检查 2:1 IF 对各种病理状况(包括神经系统疾病、心血管疾病和癌症)的有益健康影响。

Protocol

这里的所有方法和协议都经渥太华大学动物护理和兽医服务(ACVS)动物护理委员会和动物基因组学中心(TCP)批准,并符合加拿大动物护理理事会的标准。应当指出,此处描述的所有程序都应在机构和政府批准下以及由技术熟练的工作人员执行。所有小鼠都被安置在温度和湿度控制室的标准通风笼中,具有 12 小时/12 小时的光/暗循环(21~22 °C,正常住房湿度为 30%-60%),并可自由取水。雄性C57BL/6…

Representative Results

图1显示了24小时禁食后的进餐分析以及1:1和2:1间间歇禁食的比较。24小时禁食期导致体重减少±10%,在重新喂食2天后完全恢复(图1A)。24小时禁食期在随后2天的重新喂食期间诱发吞咽过度(图1B)。然而,将1:1替代日禁食和2:1间间歇禁食之间的能量摄入量进行比较后发现,1:1 IF的重新喂食期的1天?…

Discussion

充分记载,IF对人类和动物的各种疾病8、15、16、17、18、19等多种疾病都具有有益的健康作用。其潜在的机制,如自噬和肠道微生物群,最近已被阐明。提出的方案描述了小鼠的等分2:1 IF方案,用于研究IF对饮食引起的肥胖和相关代谢功能障碍的?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

K.-H.K得到了加拿大心脏和中风基金会(G-18-0022213)、J.P.Bickell基金会和渥太华大学心脏研究所启动基金的支持;H.-K.S.得到了加拿大卫生研究院(PJT-162083)、鲁本和海伦·丹尼斯学者以及太阳生活金融新研究员的资助,该奖项来自班廷和最佳糖尿病中心(BBDC)和自然科学和加拿大工程研究理事会(RGPIN-2016-06610)。R.Y.K.得到了渥太华大学心脏病研究捐赠基金的一个研究金的支持。J.H.L.得到了NSERC博士奖学金和安大略省研究生奖学金的支持。Y.O.获得UOHI颁发的研究生奖和伊丽莎白二世女王科技研究生奖学金的支持。

Materials

Comprehensive Lab Animal Monitoring System (CLAMS) Columbus Instruments Indirect calorimeter
D-(+)-Glucose solution Sigma-Aldrich G8769 For GTT
EchoMRI 3-in-1 EchoMRI EchoMRI 3-in-1 Body composition analysis
Glucometer and strips Bayer Contour NEXT These are for GTT and ITT experiments
High Fat Diet (45% Kcal% fat) Research Diets Inc. #D12451 3.3 Kcal/g
High Fat Diet (60% Kcal% fat) Research Diets Inc. #D12452 4.73 Kcal/g
Insulin El Lilly Humulin R For ITT
Mouse Strain: B6.Cg-Lepob/J The Jackson Laboratory #000632 Ob/Ob mouse
Mouse Strain: C57BL/6J The Jackson Laboratory #000664
Normal chow (17% Kcal% fat) Harlan #2918
Scale Mettler Toledo Body weight and food intake measurement

References

  1. Gill, S., Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metabolism. 22 (5), 789-798 (2015).
  2. Longo, V. D., Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metabolism. 23 (6), 1048-1059 (2016).
  3. Longo, V. D., Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metabolism. 19 (2), 181-192 (2014).
  4. Patterson, R. E., et al. Intermittent Fasting and Human Metabolic Health. Journal of the Academy of Nutrition and Dietetics. 115 (8), 1203-1212 (2015).
  5. Fontana, L., Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell. 161 (1), 106-118 (2015).
  6. Boutant, M., et al. SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting. Cell Reports. 14 (9), 2068-2075 (2016).
  7. Gotthardt, J. D., et al. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology. 157 (2), 679-691 (2016).
  8. Kim, K. H., et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Research. 27 (11), 1309-1326 (2017).
  9. Lancaster, G. I., Henstridge, D. C. Body Composition and Metabolic Caging Analysis in High Fat Fed Mice. Journal of Visualized Experiments. (135), (2018).
  10. Ayala, J. E., et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms. 3 (9-10), 525-534 (2010).
  11. Heijboer, A. C., et al. Sixteen h of fasting differentially affects hepatic and muscle insulin sensitivity in mice. Journal of Lipid Research. 46 (3), 582-588 (2005).
  12. McGuinness, O. P., Ayala, J. E., Laughlin, M. R., Wasserman, D. H. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. American Journal of Physiology: Endocrinology and Metabolism. 297 (4), 849-855 (2009).
  13. Jorgensen, M. S., Tornqvist, K. S., Hvid, H. Calculation of Glucose Dose for Intraperitoneal Glucose Tolerance Tests in Lean and Obese Mice. Journal of the American Association for Laboratory Animal Science. 56 (1), 95-97 (2017).
  14. Nagy, C., Einwallner, E. Study of In Vivo Glucose Metabolism in High-fat Diet-fed Mice Using Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). Journal of Visualized Experiments. (131), 56672 (2018).
  15. Kim, Y. H., et al. Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Scientific Reports. 9 (1), 2479 (2019).
  16. Li, G., et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metabolism. 26 (4), 672-685 (2017).
  17. Mitchell, S. J., et al. Daily Fasting Improves Health and Survival in Male Mice Independent of Diet Composition and Calories. Cell Metabolism. 29 (1), 221-228 (2019).
  18. Cignarella, F., et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metabolism. 27 (6), 1222-1235 (2018).
  19. Martinez-Lopez, N., et al. System-wide Benefits of Intermeal Fasting by Autophagy. Cell Metabolism. 26 (6), 856-871 (2017).
  20. Lo Martire, V., et al. Changes in blood glucose as a function of body temperature in laboratory mice: implications for daily torpor. American Journal of Physiology: Endocrinology and Metabolism. 315 (4), 662-670 (2018).
  21. Chaix, A., Zarrinpar, A., Miu, P., Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metabolism. 20 (6), 991-1005 (2014).
  22. Chaix, A., Lin, T., Le, H. D., Chang, M. W., Panda, S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metabolism. 29 (2), 303-319 (2019).
  23. Wang, B., Chandrasekera, P. C., Pippin, J. J. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Current Diabetes Reviews. 10 (2), 131-145 (2014).
  24. Pan, W. W., Myers, M. G. Leptin and the maintenance of elevated body weight. Nature Reviews: Neuroscience. 19 (2), 95-105 (2018).
  25. Jackson, D. S., Ramachandrappa, S., Clark, A. J., Chan, L. F. Melanocortin receptor accessory proteins in adrenal disease and obesity. Frontiers in Neuroscience. 9, 213 (2015).
  26. Tolson, K. P., et al. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. Journal of Neuroscience. 30 (10), 3803-3812 (2010).
  27. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S., Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 396 (6712), 670-674 (1998).
  28. Reitman, M. L. Of mice and men – environmental temperature, body temperature, and treatment of obesity. FEBS Letters. 592 (12), 2098-2107 (2018).
  29. Chvedoff, M., Clarke, M. R., Irisarri, E., Faccini, J. M., Monro, A. M. Effects of housing conditions on food intake, body weight and spontaneous lesions in mice. A review of the literature and results of an 18-month study. Food and Cosmetics Toxicology. 18 (5), 517-522 (1980).
  30. Toth, L. A., Trammell, R. A., Ilsley-Woods, M. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior. Journal of the American Association for Laboratory Animal Science. 54 (6), 708-717 (2015).
check_url/fr/60174?article_type=t

Play Video

Citer Cet Article
Kim, R. Y., Lee, J. H., Oh, Y., Sung, H., Kim, K. Assessment of the Metabolic Effects of Isocaloric 2:1 Intermittent Fasting in Mice. J. Vis. Exp. (153), e60174, doi:10.3791/60174 (2019).

View Video