Summary

マウスにおけるイソカロリック2:1間欠的断食の代謝効果評価

Published: November 27, 2019
doi:

Summary

現在の記事では、野生型およびob/obマウスにおける肥満および糖代謝障害を保護し、治療するためのアイソカロリック2:1断続的断食の詳細なプロトコルについて説明しています。

Abstract

断続的な断食(IF)は、周期的なエネルギー制限を伴う食事介入であり、多くの利点を提供し、代謝異常を打ち消すと考えられてきた。これまでのところ、断食期間と給餌期間が異なるさまざまなタイプのIFモデルが文書化されています。しかし、これらのモデルの多くは、時間制限戦略とカロリー制限戦略の両方からの多因子貢献を伴うため、結果を解釈することは困難です。例えば、げっ歯類IFレジメンとしてしばしば使用される代替日断食モデルは、栄養不足をもたらし、この介入による健康上の利益がカロリー制限と断食再供給サイクルの両方を介して媒介される可能性が高いことを示唆している。最近では、2:1 IFが1日間の断食とそれに続く摂食の2日間を含み、全体的なカロリー摂取量を減少させることなく、食事誘発性肥満および代謝改善に対する保護を提供できることが実証されています。ここで提示する、マウスにおけるこの等角2:1 IF介入のプロトコルである。また、高呼吸などの食行動を変化させたマウスモデルを調べるために必要なペアフィード(PF)プロトコルについても説明する。2:1 IFレジメンを使用して、イソカロリーIFは、体重増加の減少、グルコース恒常性の改善、およびエネルギー支出の上昇につながることが実証されています。したがって、このレジメンは、様々な疾患状態に対するIFの健康への影響を調べるのに有用であり得る。

Introduction

現代のライフスタイルは、より長い毎日の食物摂取時間と短い断食期間1に関連付けられています。これは、人間に見られる代謝の欠点と、現在の世界的な肥満の流行に貢献します。断食は人類の歴史を通じて実践されており、その多様な健康上の利点は、寿命の延長、酸化的損傷の減少、および最適化されたエネルギー恒常性2、3を含みます。断食を実践するいくつかの方法の中で、周期的なエネルギー剥奪は、断続的な断食(IF)と呼ばれ、その容易で単純なレジメンのために一般集団によって広く実践されている一般的な食事法である。前臨床および臨床モデルの最近の研究は、IFが長時間の断食およびカロリー制限に匹敵する健康上の利点を提供できることを実証し、IFが肥満および代謝性疾患2、3、4、5の潜在的な治療戦略となり得ることを示唆している。

IF レジメンは、断食時間と周波数の点で異なります。代替日断食(すなわち、1日の摂食/1日の断食;1:1 IF)は、肥満、心血管疾患、神経変性疾患などに対する有益な健康影響を研究するためにげっ歯類で最も一般的に使用されているIFレジメンである。しかし、以前の研究6、7に示すように、エネルギー摂取量分析でさらに機械的に確認された8、1:1IFは摂食不足をもたらす(〜80%)エネルギー損失を補うために十分な給餌時間の欠如のため。これは、1:1 IFによって与えられる健康上の利点がカロリー制限または摂食パターンの変更によって媒介されるかどうかは不明である。したがって、新しいIFレジメンが開発され、ここで示されている、食物摂取量を補うために十分な時間をマウスに提供する2日間の給餌/1日断食(2:1 IF)パターンで構成されています(〜99%)そして体重。これらのマウスは、次いでアドリビタム(AL)群と比較される。このレジメンは、野生型マウスのカロリー低下がない場合のイソカロリックIFの効果の検査を可能にする。

対照的に、変化した摂食行動を示すマウスモデルでは、AL供給は2:1 IFの効果を比較および調べるための適切な制御条件ではない場合があります。例えば、ob/obマウス(肥満に対して一般的に使用される遺伝モデル)は、食欲および満腹を調節するレプチンの欠如による過呼吸を示すので、2:1 IFを有するものはAL摂食を有するob/obマウスと比較して約20%減少したカロリー摂取量を示す。したがって、ob/obマウスにおけるIFの効果を適切に調べ、比較するためには、適切な対摂食群を適切な対照として用いる必要がある。

全体として、ペア供給制御の使用を含む等角2:1 IFを実行するための包括的なプロトコルが提供される。さらに、アイソカロリック2:1 IFは、野生型およびob/obマウスの両方で高脂肪食誘発肥満および/または代謝機能障害からマウスを保護することが実証される。このプロトコルは、神経疾患、心血管疾患、および癌を含む様々な病理学的状態に対する2:1 IFの有益な健康影響を調べるために使用することができる。

Protocol

ここでのすべての方法とプロトコルは、オタワ大学の動物ケアと獣医サービス(ACVS)の動物ケア委員会とフェノゲノミクスセンター(TCP)によって承認され、カナダ動物ケア評議会の基準に準拠しています。ここで説明するすべての手順は、制度的および政府的な承認の下で、また技術的に熟練したスタッフによって行われるべきである。すべてのマウスは、12時間/12時間の光/暗いサイクル(通常?…

Representative Results

図1は、24時間断食後の摂食解析と1:1と2:1の断続的な断食の比較を示しています。24時間の絶食期間は体重を約10%減少させ、2日間の再摂食後に完全に回復した(図1A)。24時間の絶食期間は、その後の2日間の再供給の間に過剰呼吸を誘発した(図1B)。それにもかかわらず、1:1代替日断食と2:1断続的断食の間?…

Discussion

IFは、ヒトおよび動物の両方の様々な疾患に有益な健康影響を提供することが十分に文書化されている8,15, 16,17,18,19.オートファジーや腸内微生物叢などのその根底にあるメカニズムが最近解明されている。提示されたプロトコルは、食事誘発性?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

K.H.Kはカナダグラント・イン・エイド心臓・脳卒中財団(G-18-0022213)、J.P.ビッケル財団、オタワ大学ハートインスティテュートスタートアップファンドの支援を受けています。H.-K.S.は、カナダ保健研究所(PJT-162083)、ルーベンとヘレン・デニス・スカラーとサンライフ・ファイナンシャル・ファイナンシャル・ニュー・リサーチ・アワード(バンティング&ベスト糖尿病センター(BBDC)と自然科学の糖尿病研究に対する助成金を受けています。カナダのエンジニアリング研究評議会(NSERC)(RGPIN-2016-06610)。R.Y.K.は、オタワ大学心臓病研究基金のフェローシップによって支援されました。J.H.L.はNSERC博士奨学金とオンタリオ大学大学院奨学金の支援を受けました。Y.O.は、UOHI寄付大学院賞、エリザベス2世大学院科学技術大学院奨学金の支援を受けています。

Materials

Comprehensive Lab Animal Monitoring System (CLAMS) Columbus Instruments Indirect calorimeter
D-(+)-Glucose solution Sigma-Aldrich G8769 For GTT
EchoMRI 3-in-1 EchoMRI EchoMRI 3-in-1 Body composition analysis
Glucometer and strips Bayer Contour NEXT These are for GTT and ITT experiments
High Fat Diet (45% Kcal% fat) Research Diets Inc. #D12451 3.3 Kcal/g
High Fat Diet (60% Kcal% fat) Research Diets Inc. #D12452 4.73 Kcal/g
Insulin El Lilly Humulin R For ITT
Mouse Strain: B6.Cg-Lepob/J The Jackson Laboratory #000632 Ob/Ob mouse
Mouse Strain: C57BL/6J The Jackson Laboratory #000664
Normal chow (17% Kcal% fat) Harlan #2918
Scale Mettler Toledo Body weight and food intake measurement

References

  1. Gill, S., Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metabolism. 22 (5), 789-798 (2015).
  2. Longo, V. D., Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metabolism. 23 (6), 1048-1059 (2016).
  3. Longo, V. D., Mattson, M. P. Fasting: molecular mechanisms and clinical applications. Cell Metabolism. 19 (2), 181-192 (2014).
  4. Patterson, R. E., et al. Intermittent Fasting and Human Metabolic Health. Journal of the Academy of Nutrition and Dietetics. 115 (8), 1203-1212 (2015).
  5. Fontana, L., Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell. 161 (1), 106-118 (2015).
  6. Boutant, M., et al. SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting. Cell Reports. 14 (9), 2068-2075 (2016).
  7. Gotthardt, J. D., et al. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology. 157 (2), 679-691 (2016).
  8. Kim, K. H., et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Research. 27 (11), 1309-1326 (2017).
  9. Lancaster, G. I., Henstridge, D. C. Body Composition and Metabolic Caging Analysis in High Fat Fed Mice. Journal of Visualized Experiments. (135), (2018).
  10. Ayala, J. E., et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms. 3 (9-10), 525-534 (2010).
  11. Heijboer, A. C., et al. Sixteen h of fasting differentially affects hepatic and muscle insulin sensitivity in mice. Journal of Lipid Research. 46 (3), 582-588 (2005).
  12. McGuinness, O. P., Ayala, J. E., Laughlin, M. R., Wasserman, D. H. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. American Journal of Physiology: Endocrinology and Metabolism. 297 (4), 849-855 (2009).
  13. Jorgensen, M. S., Tornqvist, K. S., Hvid, H. Calculation of Glucose Dose for Intraperitoneal Glucose Tolerance Tests in Lean and Obese Mice. Journal of the American Association for Laboratory Animal Science. 56 (1), 95-97 (2017).
  14. Nagy, C., Einwallner, E. Study of In Vivo Glucose Metabolism in High-fat Diet-fed Mice Using Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). Journal of Visualized Experiments. (131), 56672 (2018).
  15. Kim, Y. H., et al. Thermogenesis-independent metabolic benefits conferred by isocaloric intermittent fasting in ob/ob mice. Scientific Reports. 9 (1), 2479 (2019).
  16. Li, G., et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metabolism. 26 (4), 672-685 (2017).
  17. Mitchell, S. J., et al. Daily Fasting Improves Health and Survival in Male Mice Independent of Diet Composition and Calories. Cell Metabolism. 29 (1), 221-228 (2019).
  18. Cignarella, F., et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metabolism. 27 (6), 1222-1235 (2018).
  19. Martinez-Lopez, N., et al. System-wide Benefits of Intermeal Fasting by Autophagy. Cell Metabolism. 26 (6), 856-871 (2017).
  20. Lo Martire, V., et al. Changes in blood glucose as a function of body temperature in laboratory mice: implications for daily torpor. American Journal of Physiology: Endocrinology and Metabolism. 315 (4), 662-670 (2018).
  21. Chaix, A., Zarrinpar, A., Miu, P., Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metabolism. 20 (6), 991-1005 (2014).
  22. Chaix, A., Lin, T., Le, H. D., Chang, M. W., Panda, S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metabolism. 29 (2), 303-319 (2019).
  23. Wang, B., Chandrasekera, P. C., Pippin, J. J. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Current Diabetes Reviews. 10 (2), 131-145 (2014).
  24. Pan, W. W., Myers, M. G. Leptin and the maintenance of elevated body weight. Nature Reviews: Neuroscience. 19 (2), 95-105 (2018).
  25. Jackson, D. S., Ramachandrappa, S., Clark, A. J., Chan, L. F. Melanocortin receptor accessory proteins in adrenal disease and obesity. Frontiers in Neuroscience. 9, 213 (2015).
  26. Tolson, K. P., et al. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. Journal of Neuroscience. 30 (10), 3803-3812 (2010).
  27. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S., Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 396 (6712), 670-674 (1998).
  28. Reitman, M. L. Of mice and men – environmental temperature, body temperature, and treatment of obesity. FEBS Letters. 592 (12), 2098-2107 (2018).
  29. Chvedoff, M., Clarke, M. R., Irisarri, E., Faccini, J. M., Monro, A. M. Effects of housing conditions on food intake, body weight and spontaneous lesions in mice. A review of the literature and results of an 18-month study. Food and Cosmetics Toxicology. 18 (5), 517-522 (1980).
  30. Toth, L. A., Trammell, R. A., Ilsley-Woods, M. Interactions Between Housing Density and Ambient Temperature in the Cage Environment: Effects on Mouse Physiology and Behavior. Journal of the American Association for Laboratory Animal Science. 54 (6), 708-717 (2015).
check_url/fr/60174?article_type=t

Play Video

Citer Cet Article
Kim, R. Y., Lee, J. H., Oh, Y., Sung, H., Kim, K. Assessment of the Metabolic Effects of Isocaloric 2:1 Intermittent Fasting in Mice. J. Vis. Exp. (153), e60174, doi:10.3791/60174 (2019).

View Video