Summary

大鼠中枢神经系统中反义寡核苷酸的细胞内传递

Published: October 29, 2019
doi:

Summary

在这里,我们描述了一种通过将导管植入脊柱的腰间空间来向大鼠中枢神经系统输送药物的方法。我们专注于反义寡核苷酸的输送,尽管这种方法也适合其他治疗方式的交付。

Abstract

血脑屏障 (BBB) 是防止潜在毒性或致病剂从血液进入中枢神经系统 (CNS) 的重要防御手段。然而,它的存在也大大降低了系统管理的治疗剂对CNS的可及性。克服这一难题的一种方法是将这些制剂直接注入脑脊液(CSF),从而绕过BBB。这可以通过植入导管进行连续输注,使用渗透泵或单核聚子输送。在本文中,我们将描述通过直接植入成年大鼠脊柱的cauda equina空间的导管输送CNS靶向反义寡核苷酸(ASOs)的手术方案。作为代表性的结果,我们展示了通过该导管系统单次博鲁斯ASO内注射在大鼠CNS不同区域击倒目标RNA的功效。该程序安全、有效,不需要昂贵的设备或手术工具。此处描述的技术也可以用于以其他方式提供药物。

Introduction

中枢神经系统(CNS)的血管系统已经演变为平衡、控制分子交通、提供营养和清除废物的关键调节器。该系统也是抵御外部病原体攻击的第一道防线,这要归功于内皮细胞壁上紧密结的密集分布。这些紧密的交汇点构成血脑屏障 (BBB) 的一个方面。虽然BBB允许输送满足营养和能量需求所需的分子(如离子、葡萄糖),但它也有选择地限制病原体和有毒化学品1、2、3的通过。

具有讽刺意味的是,BBB相同的保护功能,限制病原体和有毒化学品的通过,也是我们能否在系统给生物体进行系统管理后,通过治疗轻松获得中枢神经系统的主要障碍2, 45.BBB的这一作用促使大量新的药物分销技术和方法的发展。

克服这个障碍的一个方法是将药物直接注射到脑脊液(CSF),这种液不断渗透大脑和脊髓7,8,9,10。在本文中,我们将描述一种通过将导管内端完全置于大鼠脊柱的cauda equina空间中,成功地将代理传递到腰间空间的方法。马祖尔等人曾在其他地方11日发表了对这一程序的描述。

该方案非常有效,通过定量聚合酶链反应(qPCR)分析靶基因敲除8,使反义寡核苷酸(ASO)输送到CNS的成功率超过90%。手术对动物造成最小的不适,因为100%的老鼠在手术中幸存下来,手术伤口周围肿胀最小,没有痛苦的迹象(例如,多动、脱水、盘旋、失去平衡、食物摄入量减少,以及脱水)在手术后观察。此处描述的方法的另一个优点是,它不需要昂贵的设备,也不需要任何特殊工具。

Protocol

所有体内程序均根据生物基因机构动物使用和护理委员会(IACUC)批准的协议进行,这些规程遵循美国国家卫生研究院关于照料和使用实验室动物的指南。 1. 材料和仪器制备 准备特殊的导引管。 使用带有切断轮(或锋利锯)的旋转工具切断 19 G 指针的两端,从而产生 ±1.5⁄2 厘米长的导管(图 1Aiii)。使用旋转工具的砂轮使两…

Representative Results

使用此处描述的方法,我们给两组成年雌性大鼠(250–300克;n = 10/组)注射了单一磷酸缓冲盐水PBS或300μgASO,针对长非编码(林肯)RNA Malat1;在我们的实验室中,我们经常使用Malat1 ASO作为工具化合物,因为马拉特1在所有组织(包括大脑和脊髓)中随处可见,并且含量很高。Malat1 ASO 通过 RNaseH1 介导机制15工作,该机制可降解 RNA,导致敲?…

Discussion

本文展示了一种将治疗剂直接输送到大鼠CNS的有力方法。从理论上讲,类似的技术也可以在小鼠身上进行,但由于体积较小,这种方法可能更具挑战性。因此,我们小组在小鼠中执行中枢注射(ICV)注射,用于中枢神经系统药物输送,通过不同的给药途径达到相同的目标。另一项研究16中已经描述了这种方法。

此处描述的方法的优点是,它不需要昂贵的设备…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢Ionis制药公司提供本文中描述的ASO。

Materials

3M Steri-Drape Small Drape with Adhesive Aperture 3M 1020
70% ethanol Decon Laboratories, Inc 8416-160Z
Alcohol swab sticks Dynarex NO 1204
BD General Use Syringes 1 mL Luer-Lok tip BD 1ml TB Luer-Lok tip BD 302830
BD Intramedic PE Tubing BD Polyethylene tubing PE50 Diameter 0.023 in BD 427400 (10ft, Fischer Scientific 22-204008) or 427401 (100ft, Fischer Scientific 14-170-12P)
BD Intramedic PE Tubing BD Polyethylene tubing PE10 Diameter 0.011 in BD 427410 (10ft, Fischer Scientific 14-170-11B) or 4274011 (100ft, Fischer Scientific 14-170-12B)
BD Intramedic PE Tubing Adapters BD 23 gauge intramedic luer stub adaper BD 427565 or Fisher Scientific 14-826-19E 120V 1.2A
BD PrecisionGlide Single-use Needles 30G BD BD 305128
Buprenorphine Sustained Release-lab ZooPharm Prescription required
Ethylene oxide sterilizer Andersen Sterilizer INC. AN 74i, gas sterilizer AN 74i
Guide cannula BD 19G x 1 WT (1.1 mm x 25mm) needle BD 305186
Hamilton syringe 100ul Hamilton company Hamilton syringe 100ul
Hot bead Sterilizer Fine Science Tools STERILIZER MODELNO FST 250
Ophthalmic ointment Dechra veterranery product 17033-211-38
Pocket Pro Pet Trimmer Braintree Scientific CLP-9931 B
Povidone scrub PDI S48050
Saline Baxter Sodium Chloride 0.9% Intravenous Infusion BP 50ml FE1306G
Scalpel Feather disposable scalpel No. 10
Small animal heating pad K&H Manufacturing Model # 1060
Stylet Wire McMaster-Carr 1749T14 LH-36233780
Surgery Towel drape Dynarex 4410
Surgical scissors and forceps FST and Fisher Scientific
Sutures Ethicon 4-0 or 5-0
Tool to make the Guide cannular Grainger Rotary tool (Dremel) 14H446 (Mfr: EZ456) 1.5” diameter, Pk5
EZ lock cut off Wheel 1PKX5 (Mfr: 3000-1/24) 1.5”, Pk2
Grinding Wheel, Aluminum Oxide 38EY44 (Mfr: EZ541GR)
EZ lock Mandrel 1PKX8 (Mfr: EZ402-01) 1.5” diameter
Diamond wheel floor Tile 3DRN4 (Mfr: EZ545)
Alternative source for pre-made and sterilized materials for this procedure
Dosing catheter system SAI Infusion Systems RIDC-01
Guide cannula SAI Infusion Systems RIDC-GCA
Internal Catheters SAI Infusion Systems RIDC-INC
Stylet Wire SAI Infusion Systems RIDC-STY

References

  1. Abbott, N. J. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cellular and Molecular Neurobiology. 25 (1), 5-23 (2005).
  2. Greene, C., Campbell, M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 4 (1), e1138017 (2016).
  3. Daneman, R., Engelhardt, B. Brain barriers in health and disease. Neurobiology of Disease. 107, 1-3 (2017).
  4. Ballabh, P., Braun, A., Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of Disease. 16 (1), 1-13 (2004).
  5. Cardoso, F. L., Brites, D., Brito, M. A. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Research Reviews. 64 (2), 328-363 (2010).
  6. Larsen, J. M., Martin, D. R., Byrne, M. E. Recent advances in delivery through the blood-brain barrier. Current Topics in Medicinal Chemistry. 14 (9), 1148-1160 (2014).
  7. Brinker, T., Stopa, E., Morrison, J., Klinge, P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 11, 10 (2014).
  8. Standifer, K. M., Chien, C. C., Wahlestedt, C., Brown, G. P., Pasternak, G. W. Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron. 12 (4), 805-810 (1994).
  9. Wahlestedt, C., et al. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature. 363 (6426), 260-263 (1993).
  10. Wahlestedt, C., Pich, E. M., Koob, G. F., Yee, F., Heilig, M. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science. 259 (5094), 528-531 (1993).
  11. Mazur, C., et al. Development of a simple, rapid, and robust intrathecal catheterization method in the rat. Journal of Neuroscience Methods. 280, 36-46 (2017).
  12. Wolf, D. A., et al. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery. Journal of Clinical Investigation Insight. 1 (2), e85311 (2016).
  13. Becker, L. A., et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 544 (7650), 367-371 (2017).
  14. Zhang, X., Hamblin, M. H., Yin, K. J. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biology. 14 (12), 1705-1714 (2017).
  15. Crooke, S. T., Witztum, J. L., Bennett, C. F., Baker, B. F. RNA-Targeted Therapeutics. Cell Metabolism. 27 (4), 714-739 (2018).
  16. DeVos, S. L., Miller, T. M. Direct intraventricular delivery of drugs to the rodent central nervous system. Journal of Visualized Experiments. (75), e50326 (2013).
  17. McCampbell, A., et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. Journal of Clinical Investigation. 128 (8), 3558-3567 (2018).
  18. Schoch, K. M., Miller, T. M. Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases. Neuron. 94 (6), 1056-1070 (2017).
  19. Lane, R. M., et al. Translating Antisense Technology into a Treatment for Huntington’s Disease. Methods in Molecular Biology. 1780, 497-523 (2018).
  20. Wurster, C. D., Ludolph, A. C. Antisense oligonucleotides in neurological disorders. Therapeutic Advances in Neurological Disorders. 11, (2018).
  21. Haché, M., et al. Intrathecal Injections in Children With Spinal Muscular Atrophy: Nusinersen Clinical Trial Experience. Journal of Child Neurology. 31 (7), 899-906 (2016).
  22. Goodkey, K., Aslesh, T., Maruyama, R., Yokota, T. Nusinersen in the Treatment of Spinal Muscular Atrophy. Methods in Molecular Biology. 1828, 69-76 (2018).
  23. Wurster, C. D., Ludolph, A. C. Nusinersen for spinal muscular atrophy. Therapeutic Advances in Neurological Disorders. 11, (2018).
check_url/fr/60274?article_type=t

Play Video

Citer Cet Article
Chen, Y., Mazur, C., Luo, Y., Sun, L., Zhang, M., McCampbell, A., Tomassy, G. S. Intrathecal Delivery of Antisense Oligonucleotides in the Rat Central Nervous System. J. Vis. Exp. (152), e60274, doi:10.3791/60274 (2019).

View Video