Summary

扩散MRI造影术在内窥镜内窥镜颅骨基础外科中的作用

Published: July 05, 2021
doi:

Summary

我们提出了一个协议,将扩散MRI切除术整合到患者工作,为头骨基础肿瘤进行内窥镜内膜手术。介绍了在术前和术中阶段采用这些神经成像研究的方法。

Abstract

内窥镜内窥镜手术在复杂颅底肿瘤的管理中占有突出地位。它允许通过以鼻腔为代表的自然解剖外颅通路切除一大群良性和恶性病变,避免大脑缩回和神经血管操纵。这反映在患者的快速临床恢复和永久性神经后遗症的低风险,代表传统的头骨基础手术的主要警告。手术必须针对每个特定病例进行定制,考虑其特征和与周围神经结构的关系,主要基于术前神经成像。由于技术问题,在颅骨基础手术中很少采用先进的MRI技术,例如颅骨学技术:冗长而复杂的过程,以产生可靠的重建,以便纳入神经导航系统。

本文旨在介绍在该机构实施的协议,并突出神经外科医生和神经成像团队(神经学家、神经放射学家、神经心理学家、物理学家和生物工程师)之间的协同协作和团队合作,最终目标是为每位患者选择最佳治疗方案,提高手术效果,并推动该领域的个性化医学发展。

Introduction

通过前路线接近头骨基中线和准中游区域的可能性,采用鼻孔作为自然腔,有着悠久的历史,可以追溯到一个多世纪1。然而,在过去20年中,可视化和操作技术已经改善到足以扩大其可能性,包括治疗最复杂的肿瘤,如脑膜瘤,和弦瘤,软骨瘤和颅脑血管瘤1由于(1)引入内窥镜,这给外科医生提供了这些区域的全景和详细的2D/3D视图, (2)开发术中神经导航系统,(3)实施专用手术器械。正如Kassam等人精心证明的,并经多次审查和荟面分析证实,这种手术方法的优势主要表现在它有机会恢复具有挑战性的头骨基础肿瘤,避免任何直接的脑缩回或神经操纵,从而减少手术并发症和长期神经和视觉后遗症的风险2,3,4, 56789101112

对于多个头骨基础和垂体脑肿瘤,理想的手术目标在过去几年中已经从最广泛的肿瘤切除可能转移到最安全的切除与保存神经功能,以保持患者的生活质量3。这种限制可以通过创新和有效的辅助治疗来弥补,例如放射治疗(酌情采用质子或碳离子等大量颗粒),而对于选定的肿瘤,化疗作为颅脑血管瘤13、14、15的BRAF/MEK通路的抑制剂。

然而,为了追求这些目标,仔细的术前评估是至关重要的,以调整手术策略,以适应每个病例的具体特点2。在大多数中心,MRI 术前协议通常只使用标准结构序列执行,从而提供病变的形态特征。然而,有了这些技术,并不总是能够评估肿瘤的解剖关系与相邻结构可靠3。此外,每个患者可能呈现不同的病理学诱导功能重组配置文件,只能通过扩散MRI轨迹学和功能性MRI(fMRI)检测,可用于在手术规划和术中步骤16,17中提供指导。

目前,fMRI是最常用的神经成像方式,用于映射大脑功能活动和连通性,作为手术规划18,19和改善患者结果的指导20。基于任务的 fMRI 是识别功能上涉及特定任务性能(例如手指敲击、语音流利度)的”雄辩”大脑区域的选择方式,但不适用于头骨基础肿瘤的研究。

扩散MRI图允许在体内和非侵入性重建白质大脑连接以及颅神经,调查大脑的造影结构21。开发了不同的拉片算法,通过连接水分子扩散剖面来重建轴向通路,在每个大脑息音中进行评估。确定性传导遵循主要的扩散方向,而概率传导学则评估可能的路径的连通性分布。此外,不同的模型可以应用于评估每个 voxel 中的扩散性,并可以定义两个主要类别:单光纤模型,如扩散张力模型,其中单个光纤方向进行评估,以及多纤维模型,如球形解构,其中重建了多个交叉光纤方向22,23。尽管关于扩散MRI传道学的方法论争论不休,但其在神经外科工作流中的效用目前已经确立。可以评估白质道错位和与肿瘤的距离,保留特定的白质连接。此外,扩散张力成像 (DTI) 地图,特别是部分异位性 (FA) 和平均扩散性 (MD), 可用于评估与可能的肿瘤渗透和纵向通道监测相关的微结构白质变化。所有这些功能使扩散MRI传道学成为通过神经导航系统24进行手术前规划和术中决策的有力工具。

然而,由于需要专业知识和耗时的工作来优化扩散MRI序列采集、分析方案以及将传道学结果纳入神经导航系统25,地貌学技术在颅骨基础手术中的应用受到了限制。最后,由于技术困难,这些分析从内侧白质结构扩展到颅神经的超白质结构。事实上,只有最近的研究提出了初步结果,试图整合先进的MRI和头骨基础手术26,27,28。

本文提出了利用扩散MRI造影术对脑垂体和颅底肿瘤进行多学科管理的协议。该方案在该机构的实施源于神经外科医生、神经内分泌学家和神经成像团队(包括临床和生物信息学专业知识)之间的协作,为这些患者提供有效的综合多轴向方法。

在该中心,我们集成了多学科协议,以管理头骨基础肿瘤患者,提供最翔实的描述可能,并定制和个性化的手术计划。我们表明,这个协议可以采取临床和研究设置的任何病人与头骨基础肿瘤,以指导治疗策略,并提高对这些病变引起的大脑修饰的知识。

Protocol

该议定书遵循地方研究委员会的道德标准,并遵循1964年赫尔辛基宣言及其后来的修正案或可比的道德标准。 1. 患者选择 采用以下包容标准:18岁以上的患者,完全合作,呈现颅骨基的肿瘤,或垂体-脑部区域。 排除患有MRI(即心脏起搏器或铁磁材料)或出现紧急临床条件(即颅内高血压、需要立即手术的急性视力丧失)或孕妇、精神病患者或明确拒绝参加本协…

Representative Results

一名55岁的妇女出现渐进性视力缺陷。她的病史不起眼。在眼科评估方面,双边视力下降(右眼6/10,左眼8/10)被揭示出来,计算机化的视野显示出完全的咬合性视界。神经检查没有明显的进一步缺陷,但患者报告,在过去2-3个月中,持续性缺食和饥饿和口渴感增加,体重增加4-5公斤,夜间经常醒来,需要小便。在内分泌学评估中,揭示了中央皮质炎和糖尿病皮质。患者接…

Discussion

提交协议的应用导致安全有效地治疗最具挑战性的颅内肿瘤之一,如颅内咽血管瘤侵入第3心室,可能为病变开辟了一个新的视野,大约一个世纪前,H.Cushing将这种病变定义为最令人费解的颅内肿瘤1。准确的术前规划,集成先进的MRI技术和多学科临床评估相结合,使我们能够定制手术策略,确定最合适的手术走廊,并尽量减少神经结构损伤的风险2,49,50,5…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢神经放射学区的放射学技术人员和护士工作人员,伊斯兰神学院科学神经学协调员玛丽亚·格拉齐亚·克雷帕尔迪博士的合作。

Materials

BRAF V600E-specific clone VE1 Ventana
Dural Substitute Biodesign, Cook Medical
Endoscope Karl Storz, 4mm in diameter, 18 cm in length, Hopkins II – Karl Storz Endoscopy
Immunohistochemical staining instrument  Ventana Benchmark, Ventana Medical Systems
MRI 3T Magnetom Skyra, Siemens Health Care
Neuronavigator Stealth Station S8 Surgical Navigation System, MEDTRONIC

References

  1. Wang, A. J., Zaidi, H. A., Laws, E. D. History of endonasal skull base surgery. Journal of Neurosurgical Sciences. 60 (4), 441-453 (2016).
  2. Kassam, A. B., Gardner, P., Snyderman, C., Mintz, A., Carrau, R. Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurgical Focus. 19 (1), 6 (2005).
  3. Schwartz, T. H., Morgenstern, P. F., Anand, V. K. Lessons learned in the evolution of endoscopic skull base surgery. Journal of Neurosurgery. 130 (2), 337-346 (2019).
  4. Cossu, G., et al. Surgical management of craniopharyngiomas in adult patients: a systematic review and consensus statement on behalf of the EANS skull base section. Acta Neurochirurgica. 162 (5), 1159-1177 (2020).
  5. Komotar, R. J., Starke, R. M., Raper, D. M., Anand, V. K., Schwartz, T. H. Endoscopic endonasal compared with microscopic transsphenoidal and open transcranial resection of craniopharyngiomas. World Neurosurgery. 77 (2), 329-341 (2012).
  6. Clark, A. J., et al. Endoscopic surgery for tuberculum sellae meningiomas: a systematic review and meta-analysis. Neurosurgical Review. 36 (3), 349-359 (2013).
  7. Ditzel Filho, L. F., et al. Endoscopic Endonasal Approach for Removal of Tuberculum Sellae Meningiomas. Neurosurgical Clinics of North America. 26 (3), 349 (2015).
  8. Labidi, M., et al. Clivus chordomas: a systematic review and meta-analysis of contemporary surgical management. Journal of Neurosurgical Science. 60 (4), 476-484 (2016).
  9. Cannizzaro, D., et al. Microsurgical versus endoscopic trans-sphenoidal approaches for clivus chordoma: a pooled and meta-analysis. Neurosurgical Review. , (2020).
  10. Fujii, T., Platt, A., Zada, G. Endoscopic Endonasal Approaches to the Craniovertebral Junction: A Systematic Review of the Literature. Journal of Neurological Surgery: Part B Skull Base. 76 (6), 480-488 (2015).
  11. Tubbs, R. S., Demerdash, A., Rizk, E., Chapman, J. R., Oskouian, R. J. Complications of transoral and transnasal odontoidectomy: a comprehensive review. Child’s Nervous System. 32 (1), 55-59 (2016).
  12. Zoli, M., et al. Endoscopic approaches to orbital lesions: case series and systematic literature review. Journal of Neurosurgery. 3, 1 (2020).
  13. Jensterle, M., et al. Advances in the management of craniopharyngioma in children and adults. Radiology and Oncology. 53 (4), 388-396 (2019).
  14. Roque, A., Odia, Y. BRAF-V600E mutant papillary craniopharyngioma dramatically responds to combination BRAF and MEK inhibitors. CNS Oncology. 6 (2), 95-99 (2017).
  15. Marucci, G., et al. Targeted BRAF and CTNNB1 next-generation sequencing allows proper classification of nonadenomatous lesions of the sellar region in samples with limiting amounts of lesional cells. Pituitary. 18 (6), 905-911 (2015).
  16. Silva, M. A., See, A. P., Essayed, W. I., Golby, A. J., Tie, Y. Challenges and techniques for presurgical brain mapping with functional MRI. NeuroImage Clinical. 17, 794-803 (2017).
  17. Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumor and brain plasticity. The Lancet Neurology. 4 (8), 476-486 (2005).
  18. Maesawa, S., et al. Evaluation of resting state networks in patients with gliomas: connectivity changes in the unaffected side and its relation to cognitive function. PloS One. 10 (2), 0118072 (2015).
  19. Gonen, T., et al. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions. PloS One. 12 (7), 0180740 (2017).
  20. Pillai, J. J. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. American Journal of Neuroradiology. 31 (2), 219-225 (2010).
  21. Bizzi, A. Presurgical mapping of verbal language in brain tumors with functional MR imaging and MR tractography. Neuroimaging Clinics of North America. 19 (4), 573-596 (2009).
  22. Dell’Acqua, F., Tournier, J. D. Modelling white matter with spherical deconvolution: How and why. NMR in Biomedicine. 32 (4), 3945 (2019).
  23. Maier-Hein, K. H., et al. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 8 (1), 1349 (2017).
  24. Costabile, J. D., Alaswad, E., D’Souza, S., Thompson, J. A., Ormond, D. R. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Frontiers in Oncology. 9, 426 (2019).
  25. Jacquesson, T., et al. Full tractography for detecting the position of cranial nerves in preoperative planning for skull base surgery: technical note. Journal of Neurosurgery. , 1-11 (2019).
  26. Zolal, A., et al. Comparison of probabilistic and deterministic fiber tracking of cranial nerves. Journal of Neurosurgery. 127 (3), 613-621 (2017).
  27. Ung, N., et al. A Systematic Analysis of the Reliability of Diffusion Tensor Imaging Tractography for Facial Nerve Imaging in Patients with Vestibular Schwannoma. Journal of Neurological Part B Skull Base. 77 (4), 314-318 (2016).
  28. Anik, I., et al. Visual Outcome of an Endoscopic Endonasal Transsphenoidal Approach in Pituitary Macroadenomas: Quantitative Assessment with Diffusion Tensor Imaging Early and Long-Term Results. World Neurosurgery. 12, 691-701 (2018).
  29. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9 (1), 97-113 (1971).
  30. Yushkevich, P. A., et al. User-Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP. Neuroinformatics. 17 (1), 83-102 (2019).
  31. Tournier, J. D., Calamante, F., Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 35 (4), 1459-1472 (2007).
  32. Mormina, E., et al. Optic radiations evaluation in patients affected by high-grade gliomas: a side-by-side constrained spherical deconvolution and diffusion tensor imaging study. Neuroradiology. 58 (11), 1067-1075 (2016).
  33. Hales, P. W., et al. Delineation of the visual pathway in paediatric optic pathway glioma patients using probabilistic tractography, and correlations with visual acuity. Neuroimage Clinical. 11 (17), 541-548 (2017).
  34. Testa, C., et al. The effect of diffusion gradient direction number on corticospinal tractography in the human brain: an along-tract analysis. Magma. 30 (3), 265-280 (2017).
  35. Talozzi, L., et al. Along-tract analysis of the arcuate fasciculus using the Laplacian operator to evaluate different tractography methods. Magnetic Resonance Imaging. 54, 183-193 (2018).
  36. Zoli, M., et al. Postoperative outcome of body core temperature rhythm and sleep-wake cycle in third ventricle craniopharyngiomas. Neurosurgical Focus. 41 (6), 12 (2016).
  37. Foschi, M., et al. Site and type of craniopharyngiomas impact differently on 24-hour circadian rhythms and surgical outcome. A neurophysiological evaluation. Autonomic Neuroscience. 208, 126-130 (2017).
  38. Mojón, A., Fernández, J. R., Hermida, R. C. Chronolab: an interactive software package for chronobiologic time series analysis written for the Macintosh computer. Chronobiology International. 9 (6), 403-412 (1992).
  39. Hardesty, D. A., Montaser, A. S., Beer-Furlan, A., Carrau, R. L., Prevedello, D. M. Limits of endoscopic endonasal surgery for III ventricle craniopharyngiomas. Journal of Neurosurgical Sciences. 62 (3), 310-321 (2018).
  40. Lee, W. H., et al. Effect of Dexmedetomidine Combined Anesthesia on Motor evoked Potentials During Brain Tumor Surgery. World Neurosurgery. 123, 280-287 (2019).
  41. Barazi, S. A., et al. Extended endoscopic transplanum-transtuberculum approach for pituitary adenomas. British Journal of Neurosurgery. 27 (3), 374-382 (2013).
  42. Singh, H., et al. Intraoperative Neurophysiological Monitoring for Endoscopic Endonasal Approaches to the Skull Base: A Technical Guide. Scientifica. , 1751245 (2016).
  43. Mazzatenta, D., et al. Outcome of Endoscopic Endonasal Surgery in Pediatric Craniopharyngiomas. World Neurosurgery. 134, 277-288 (2020).
  44. Milanese, L., et al. Antibiotic Prophylaxis in Endoscopic Endonasal Pituitary and Skull Base Surgery. World Neurosurgery. 106, 912-918 (2017).
  45. Hadad, G., et al. A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope. 116 (10), 1882-1886 (2006).
  46. Zoli, M., et al. Cavernous sinus invasion by pituitary adenomas: role of endoscopic endonasal surgery. Journal of Neurosurgical Sciences. 60 (4), 485-494 (2016).
  47. Louis, D. N., et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathologica. 131 (6), 803-820 (2016).
  48. Coury, J. R., Davis, B. N., Koumas, C. P., Manzano, G. S., Dehdashti, A. R. Histopathological and molecular predictors of growth patterns and recurrence in craniopharyngiomas: a systematic review. Neurosurgical Review. 43 (1), 41-48 (2020).
  49. Prieto, R., et al. Craniopharyngioma adherence: a comprehensive topographical categorization and outcome-related risk stratification model based on the methodical examination of 500 tumors. Neurosurgical Focus. 41 (6), 13 (2016).
  50. Cagnazzo, F., Zoli, M., Mazzatenta, D., Gompel, J. J. V. Endoscopic and Microscopic Transsphenoidal Surgery of Craniopharyngiomas: A Systematic Review of Surgical Outcomes Over Two Decades. Journal of Neurological Surgery: part A Central European Neurosurgery. 79 (3), 247-256 (2018).
  51. Cavallo, L. M., et al. The endoscopic endonasal approach for the management of craniopharyngiomas: a series of 103 patients. Journal of Neurosurgery. 121, 100-113 (2014).
  52. Andersson, J. L., Skare, S., Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 20 (2), 870-888 (2003).
  53. Castellano, A., Cirillo, S., Bello, L., Riva, M., Falini, A. Functional MRI for Surgery of Gliomas. Current Treatment Options in Neurology. 19 (10), 34 (2017).
  54. Elowe-Gruau, E., et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. Journal of Clinical Endocrinology and Metabolism. 98 (6), 2376-2382 (2013).
  55. Jacquesson, T., et al. Overcoming Challenges of Cranial Nerve Tractography: A Targeted Review. Neurosurgery. 84 (2), 313-325 (2019).
check_url/fr/61724?article_type=t

Play Video

Citer Cet Article
Zoli, M., Talozzi, L., Mitolo, M., Lodi, R., Mazzatenta, D., Tonon, C. Role of Diffusion MRI Tractography in Endoscopic Endonasal Skull Base Surgery. J. Vis. Exp. (173), e61724, doi:10.3791/61724 (2021).

View Video