Summary

携带人多能干细胞球体的核壳微胶囊的微流体制造

Published: October 13, 2021
doi:

Summary

本文介绍了使用同轴流聚焦装置封装人多能干细胞(hPSC)。我们证明,这种微流体封装技术能够有效地形成hPSC球体。

Abstract

人类多能干细胞(hPSCs)的三维(3D)或球状培养物具有改善分化结果和可扩展性的好处。在本文中,我们描述了一种用于hPSC球体的稳健且可重复形成的策略,其中利用同轴流聚焦装置将hPSC卡入核壳微胶囊内。核心溶液含有hPSCs的单细胞悬浮液,通过掺入高分子量聚乙二醇(PEG)和密度梯度培养基而变得粘稠。壳流由PEG-4臂马来酰亚胺或PEG-4-Mal组成,并沿着核心流流流向两个连续的油结。液滴形成发生在第一个油结处,壳溶液包裹在核心周围。壳的化学交联发生在第二个油连接处,通过向这些液滴引入二硫醇交联剂(1,4-二硫代噻嗪醇或DTT)。交联剂 通过 点击化学与马来酰亚胺官能团反应,导致在微胶囊周围形成水凝胶壳。我们的封装技术以每秒10粒胶囊的速度生产400μm直径的胶囊。由此产生的胶囊具有水凝胶壳和水性核心,允许单个细胞迅速组装成聚集体并形成球状体。包封过程不会对hPSCs的生存能力产生不利影响,包封后3天观察到>95%的存活率。为了进行比较,包封在固体凝胶微粒(无水性核心)中的hPSCs在包封后3天未形成球状体,并且具有<50%的活力。包封后48 h内核壳微胶囊内hPSCs的球状体形成,球体直径与细胞接种密度成函数关系。总体而言,该协议中描述的微流体封装技术非常适合hPSCs封装和球体形成。

Introduction

由于这种培养形式12,3提供了改进的多能性和分化潜力,因此对人多能干细胞(hPSCs)的3D培养物有相当大的兴趣。hPSC通常通过生物反应器,微孔,水凝胶和聚合物支架456形成球体或其他3D培养形式。封装为将单个hPSC组织成球体提供了另一种方法。一旦封装了hPSC球体,就可以轻松处理并转移到微量滴定板中,以进行分化,疾病建模或药物测试实验。将hPSC包裹在水凝胶层中还可以保护细胞免受剪切损伤,并允许以高搅拌速率在生物反应器中培养球体7

我们的干细胞封装方法随着时间的推移而发展。首先,我们专注于固体水凝胶微粒,并展示了小鼠胚胎干细胞(mESCs)的成功封装和培养8。然而,值得注意的是,当包封在这种水凝胶微粒中时,人类胚胎干细胞(hESCs)具有低活力,可能是由于这些细胞在包封后更需要重新建立细胞 – 细胞接触。我们推断,具有水性核心的异质微胶囊可能更适合于依赖于细胞 – 细胞接触的快速重建的细胞的包封。用于制造水性核/水凝胶壳微胶囊的同轴流聚焦微流体装置的概念改编自He等人但原始方法中采用了藻酸盐,而是将基于PEG的水凝胶掺入壳中。我们首先证明了核壳微胶囊10 中原代肝细胞的成功包封和球体形成,以及最近描述的hES和iPS细胞7的包封。如图 1A所示,胶囊在流动聚焦装置中制造,其中壳和核心流动流在喷射到油相之前从一侧到另一侧过渡到同轴流。核心流含有增加溶液粘度的细胞和添加剂(非反应性PEG MW 35kD和碘克沙醇 – 商业名称OptiPrep),而壳流含有反应性分子(PEG-4-Mal)。连续的同轴流被离散化为保留核壳结构的液滴。通过暴露于二硫醇交联剂(DTT)使核壳结构永久化,DTT 通过 点击化学与PEG-4-Mal反应,并形成薄(〜10μm)的水凝胶表皮或壳。在乳液破碎并且胶囊被转移到水相之后,PEG分子从核心扩散并被水分子取代。这导致水性核心和水凝胶壳微胶囊。

下面提供了有关如何制造微流体器件,如何制备细胞以及如何进行hPSC封装的分步说明。

Protocol

1. 设备制造 使用CAD软件10,11进行微囊化装置和解离装置的设计。 在硅晶圆上依次纺涂三层SU-8光刻胶(图2A),以获得具有所需高度的结构:60,100和150μm。注:顶部和底部模具的工艺相同。 用SU-8 2025负光刻胶以1,100 rpm的速度旋转涂覆干净的10厘米硅片,以产生第一个60μm层。在热板上在65°C下软烘烤3分钟…

Representative Results

通过遵循上述方案,阅读器将能够制造微流体装置并产生携带细胞的微胶囊。 图3A 显示了使用微流体液滴生成制造的最佳和次优微胶囊的示例。PEG-4-Mal的不同配方导致不同形态的胶囊 – 皱纹胶囊与凝胶化不良,机械完整性低且无法承受在搅拌生物反应器中培养有关。在PEG含量为>6%时观察到的光滑胶囊代表了所需的胶囊形态,并且对于细胞培养足够强大。通过将微珠掺入芯中…

Discussion

这里描述的封装过程导致hPSC球体的可重复形成。微胶囊形式可以很容易地将球体分配到微量滴定板的孔中,用于旨在改善/优化分化方案或测试疗法的实验。包封的干细胞球体也可用于悬浮培养物,其中水凝胶壳保护细胞免受剪切诱导的损伤7

协议中有几个关键步骤。将核心、壳和油流的流速保持在“协议”部分所述的范围内非常重要。如果壳流速太低,?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究部分得到了梅奥诊所再生医学中心,J. W. Kieckhefer基金会,Al Nahyan基金会,明尼苏达州再生医学(RMM 101617 TR 004)和NIH(DK107255)的资助。

Materials

0.22 µm Syringe Filters Genesee Scientific 25-244
1 ml syringe luer-lock tip BD 309628
1x DPBS Corning 23220003
4-arm PEG maleimide, 10kDa Laysan Inc. 164-68
5 ml syringe luer-lock tip BD 309646
6-WELL NON-TREATED PLATE USA Scientific CC7672-7506
Aquapel Applicator Pack Aquapel Glass Treatment 47100
CAD software Autodesk AutoCAD v2020
CELL STRAINER 100 µm pore size cardinal 335583
Chlorotrimethylsilane Aldrich 386529-100mL
Countess II FL Automated Cell Counter Life technology A27974
Digital hot plate Dataplate
Digital vortex mixer Fisher Scientific 215370
Distilled water Gibco 15230-162
Dithiotheritol (DTT) Sigma D0632-10G
DMEM/F12 media gibco 11320-033
Falcon 15 mL Conical Centrifuge Tubes Fisher scientific 14-959-53A
Fisherbrand accuSpin Micro 17 Microcentrifuge live 13-100-675
HERACELL VIOS 160i CO2 Incubator Thermo Scientific 50144906
Inverted Fluorescence Motorized Microscope Olympus Olympus IX83
Laurell Spin Coaters Laurell Technologies WS-650MZ-23NPPB
Live/Dead mammalian staining kit Fisher L3224
Magic tape Staples 483535
Micro Medical Tubing (0.015" I.D. x 0.043" O.D.) Scientific Commodities, Inc BB31695-PE/2
Micro stir bar Daigger Scientific EF3288E
MilliporeSigma Filter Forceps Fisher scientific XX6200006P
Mineral oil Sigma M8410-1L
mTeSR 1 Basal Medium STEMCELL TECHNOLOGY 85850
Needles-Stainless Steel  14 Gauge CML supply 901-14-025
Needles-Stainless Steel  15 Gauge CML supply 901-15-050
OptiPrep STEMCELL TECHNOLOGY 7820
Oven Thermo Scientific HERA THERM Oven
Penicillin:Streptomycin (10,000 U/mL Penicillin G, 10mg/mL Streptomycin) Gemini 400-109
Petri Dish 150X20 Sterile Vent Sarstedt, Inc. 82.1184.500
Plasma Cleaning System Yield Engineering System, Inc. YES-G500
Pluronic F-127 Sigma P2443-250G
Poly(ethylene glycol) 35kDa Sigma 94646-250G-F
PrecisionGlide Needle 27G BD 305109
Rock inhibitor Y-27632 dihydrocloride SELLECK CHEM S1049-10mg
Silicon wafer 100mm University Wafer 452
Slide glass (75mm ´ 25mm) CardinalHealth M6146
Span 80 Sigma S6760-250ML
SpeedMixer Thinky ARE-310
Spin-X Centrifuge Tube Filter (0.22 µm) Costar 8160
SU-8 2025 Kayaku Advanced Materials Y111069 0500L1GL
SU-8 developer Kayaku Advanced Materials Y020100 4000L1PE
Surgical Design Royaltek Stainless Steel Surgical Scalpel Blades fisher scientific 22-079-684
SYLGARD TM 184 Silicone Elastomer Kit (PDMS) Dow Corning 2065622
Syringe pump New Era Pump System, Inc NE-4000
Triethanolamine Sigma-aldrich T58300-25G
TrypLE Express Gibco 12604-013
Tygon Tubing (0.02" I.D. x 0.06" O.D.) Cole-Parmer 06419-01
Tygon Tubing (0.04" I.D. x 0.07" O.D.) Cole-Parmer 06419-04
Ultrasonic cleaner FS20D Fisher Scientific CPN-962-152R
Vacuum desiccator Bel-Art F42025-0000
Zeiss Stemi DV4 Stereo Microscope 8x-32x ZEISS 435421-0000-000
μPG 101 laser writer Heidelberg Instruments HI 1128

References

  1. Zhu, Z., Huangfu, D. Human pluripotent stem cells: an emerging model in developmental biology. Development. 140 (4), 705-717 (2013).
  2. Liu, G., David, B. T., Trawczynski, M., Fessler, R. G. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Reviews and Reports. 16 (1), 3-32 (2020).
  3. Chan, S. W., Rizwan, M., Yim, E. K. Emerging methods for enhancing pluripotent stem cell expansion. Frontiers in Cell and Developmental Biology. 8, 70 (2020).
  4. Lei, Y., Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proceedings of the National Academy of Sciences of the United States of America. 110 (52), 5039-5048 (2013).
  5. Olmer, R., et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Engineering Part C: Methods. 18 (10), 772-784 (2012).
  6. Kraehenbuehl, T. P., Langer, R., Ferreira, L. S. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nature Methods. 8 (9), 731-736 (2011).
  7. Fattahi, P., et al. Core-shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor. Scientific Reports. 11 (1), 1-13 (2021).
  8. Siltanen, C., et al. Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomaterialia. 34, 125-132 (2016).
  9. Agarwal, P., et al. One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab on a Chip. 13 (23), 4525-4533 (2013).
  10. Siltanen, C., et al. One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids. Acta Biomaterialia. 50, 428-436 (2017).
  11. Rahimian, A., Siltanen, C., Feyzizarnagh, H., Escalante, P., Revzin, A. Microencapsulated immunoassays for detection of cytokines in human blood. ACS Sensors. 4 (3), 578-585 (2019).
  12. Kim, M., Lee, J., Jones, C. N., Revzin, A., Tae, G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 31, 3596-3603 (2010).
  13. Shin, D. S., et al. Photodegradable hydrogels for capture, detection, and release of live cells. Angewandte Chemie International Edition. , (2014).
  14. You, J., et al. Bioactive photodegradable hydrogel for cultivation and retrieval of embryonic stem cells. Advanced Functional Materials. , (2015).

Play Video

Citer Cet Article
Gwon, K., Hong, H. J., Gonzalez-Suarez, A. M., Stybayeva, G., Revzin, A. Microfluidic Fabrication of Core-Shell Microcapsules carrying Human Pluripotent Stem Cell Spheroids. J. Vis. Exp. (176), e62944, doi:10.3791/62944 (2021).

View Video