Summary

一种基于报告基因的细胞检测,用于监测剪接效率

Published: September 15, 2021
doi:

Summary

该协议描述了一种微型基因报告基因检测,用于监测5′-剪接位点突变对剪接的影响,并开发抑制因子U1 snRNA以挽救突变诱导的剪接抑制。报告基因和抑制子U1 snRNA构建体在HeLa细胞中表达,并通过引物延伸或RT-PCR分析剪接。

Abstract

在基因表达过程中,前mRNA剪接的关键步骤涉及精确识别剪接位点和高效组装剪接体复合物,以在成熟mRNA的细胞质输出之前加入外显子并去除内含子。剪接效率可以通过剪接位点突变的存在,反式剪接因子的影响或治疗活性来改变。在这里,我们描述了可用于监测任何给定外显子的剪接效率的细胞测定方案。该测定使用适应性强的质粒编码为3-外显子/2-内含子的微型基因报告基因,可通过瞬时转染在哺乳动物细胞中表达。转染后,分离总细胞RNA,并通过引物延伸或半定量逆转录酶 – 聚合酶链反应(RT-PCR)确定报告mRNA中外显子剪接的效率。我们描述了如何通过在报告中引入疾病相关的5′剪接位点突变来确定其影响;以及如何通过与U1小核RNA(snRNA)构建体共转染来实现这些突变的抑制,该构建体在其5’区域中携带代偿性突变,该区域与前mRNA中外显子 – 内含子连接处的5′-剪接位点基本配对。因此,报告基因可用于设计治疗性U1颗粒,以提高对突变体5′剪接位点的识别。将 顺式作用调节位点(例如剪接增强剂或消音器序列)插入报告程序中也可用于检查U1 snRNP在由特定替代剪接因子介导的调节中的作用。最后,将报告细胞与小分子孵育,以确定潜在疗法对组成前mRNA剪接或携带突变5′剪接位点的外显子的影响。总体而言,报告基因检测可用于监测各种条件下的剪接效率,以研究基本的剪接机制和剪接相关疾病。

Introduction

前mRNA剪接是一个重要的处理步骤,它去除非编码内含子并精确地标记编码外显子以形成成熟的mRNA。通过剪接机械的组件识别外显子-内含子交界处的共识序列,称为5′-拼接位点和3-拼接位点,启动拼接过程。U1小核核糖核蛋白(snRNP)通过将U1 snRNA与前mRNA1的碱基配对来识别5-剪接位点。改变5-剪接位点序列的遗传突变与许多疾病有关23。据预测,U1 snRNA与突变5-剪接位点的碱基配对的损失会导致异常剪接,这可能会损害受影响转录本的翻译。纠正剪接缺陷的潜在治疗方法包括通过修饰的U1 snRNA在其5-区域携带代偿核苷酸变化来抑制突变,该区域与5-剪接位点基本配对。这种修饰的U1 snRNA,也称为外显子特异性U1 snRNA,已被发现可有效逆转剪接缺陷,导致获救的mRNA45678的蛋白质表达增加。

在这里,我们描述了U1 snRNP补集测定,这是一种基于报告的细胞剪接测定,可以评估5-ss突变对外显子剪接的影响,也可用于开发修饰的U1 snRNA,以挽救外显子包涵体。我们还提供通过引物延伸和RT-PCR监测剪接报告转录本的方案,以及通过引物延伸和RT-qPCR确定修饰的U1 snRNA的表达的方案。

Protocol

1. 试剂和缓冲液 注意:所有使用真空过滤器的灭菌都应在生物安全柜中使用0.2μm聚醚砜(PES)膜进行。 将1.0 mL焦碳酸二乙酯(DEPC)加入1.0升去离子水中,在室温(RT)下混合至少1小时,高压灭菌两次,然后在使用前冷却至室温,以制备不含RNase的水。 通过将一包DMEM粉末(13.4克),3.7克碳酸氢钠,100毫升胎牛血清(FBS),青霉素和链霉素与约800毫升无菌去离?…

Representative Results

剪接报告人Dup51是一种三外显子二内含子微型基因,来源于人类β珠蛋白基因,之前已有描述(图1A)11,12 。我们通过引入Usher综合征相关的5’剪接位点突变创建了一个突变报告者Dup51p,这些突变发生在原钙粘蛋白15(PCDH15)基因13的外显子3中。外显子2-内含子2结处的5′-接头位点序列从CAG/GUUGGUAUC改为AUG/GUGUGUA…

Discussion

该测定可以适用于HeLa以外的细胞系中的剪接分析,但是,可能需要优化影响转染效率的因素,例如细胞汇合度和DNA数量。报告者与U1构建比是另一个关键参数,可能需要根据在其他细胞类型中观察到的表达水平来确定。提取的RNA的质量对于剪接分析至关重要;因此,强烈建议使用不含RNase的水并用RNase灭活剂对表面进行去污。

通过引物延伸或荧光RT-PCR对报告转录本的分析产生类…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国立卫生研究院(R21CA170786和R01GM127464)和美国癌症协会(机构研究资助74-001-34-IRG)以及山谷研究合作计划(P1-4009和VRP77)向S.S.和W.M的资金支持。内容完全由作者负责,并不一定代表美国国立卫生研究院的官方观点。

Materials

Reagent Grade Deionized Water ThermoFisher Scientific 23-751628
Diethyl pyrocarbonate (DEPC) Sigma-Aldrich D5758-25ML
Dulbecco's Modified Eagle Medium (DMEM) powder packet Gibco 12100-046
Sodium Bicarbonate ThermoFisher Scientific S233-500
Fetal Bovine Serum (FBS), Australian Source, Heat Inactivated Omega Scientific FB-22
Penicillin-Streptomycin (P/S) Sigma-Aldrich P4458-100ML
Sodium Hydroxide, Standard Solution 1.0N Sigma-Aldrich S2567-16A
Hydrochloric Acid, Certified ACS Plus, 36.5 to 38.0% ThermoFisher Scientific A144-500
Disposable PES Bottle Top Filters ThermoFisher Scientific FB12566510
EDTA Disodium Salt Dihydrate Amresco 0105-2.5KG
2.5% Trypsin (10x), no phenol red ThermoFisher Scientific 15090046
Sodium Chloride Fisher Bioreagent BP358-212
Potassium Chloride Fisher Bioreagent BP366-1
Disodium Hydrogen Phosphate Heptahydrate Fisher Bioreagent BP332-1
Potassium Dihydrogen Phosphate Fisher Bioreagent BP362-1
Transfection medium – Opti-MEM™ I Reduced Serum Medium, no phenol red ThermoFisher Scientific 11058021
Transfection Reagent – Lipofectamine™ 2000 ThermoFisher Scientific 13778150
TRIzol™ Reagent ThermoFisher Scientific 15596018
Chloroform (Approx. 0.75% Ethanol as Preservative/Molecular Biology) ThermoFisher Scientific BP1145-1
Ethanol, Absolute (200 Proof), Molecular Biology Grade, Fisher BioReagents ThermoFisher Scientific BP2818-4
Isopropanol, Molecular Biology Grade, Fisher BioReagents ThermoFisher Scientific BP2618-212
Glycogen (5 mg/ml) ThermoFisher Scientific AM9510
Direct-zol RNA Miniprep Kit Zymo Research R2052
ATP, [γ-32P]- 6000Ci/mmol 150mCi/ml Lead, 1 mCi PerkinElmer NEG035C001MC
T4 Polynucleotide Kinase New England Biolabs M0201L
Size exclusion beands – Sephadex® G-25 Sigma-Aldrich G2580-10G
Size exclusion mini columns USA Scientific 1415-0600
pBR322 DNA-MspI Digest New England Biolabs N3032S
Low Molecular Weight Marker, 10-100 nt Affymetrix 76410 100 UL
Rnase inactivating reagents – RNaseZAP™ Sigma-Aldrich R2020-250ML
dNTP Mix (10 mM ea) ThermoFisher Scientific 18427013
RNaseOUT™ Recombinant Ribonuclease Inhibitor ThermoFisher Scientific 10777019
Reverse Transcriptase – M-MLV Reverse Transcriptase ThermoFisher Scientific 28025013 used for primer extension
Taq DNA Polymerase ThermoFisher Scientific 10342020
Random Hexamers (50 µM) ThermoFisher Scientific N8080127
Real time PCR mix – SYBR™ Select Master Mix ThermoFisher Scientific 4472903
SuperScript™ III Reverse Transcriptase ThermoFisher Scientific 18080093 used for cDNA preparation
Dithiothreitol (DTT) ThermoFisher Scientific 18080093
5X First-Strand Buffer ThermoFisher Scientific 18080093
Formamide (≥99.5%) ThermoFisher Scientific BP228-100 Review Material Safety Data Sheets
Bromophenol Blue sodium salt Sigma-Aldrich 114405-5G
Xylene Cyanol FF Sigma-Aldrich 2650-17-1
Tris Base (White Crystals or Crystalline Powder/Molecular Biology) ThermoFisher Scientific BP152-5
Boric Acid (Crystalline/Electrophoresis) ThermoFisher Scientific BP168-500
Acrylamide: Bis-Acrylamide 19:1 (40% Solution/Electrophoresis) ThermoFisher Scientific BP1406-1 Review Material Safety Data Sheets
Urea (Colorless-to-White Crystals or Crystalline Powder/Mol. Biol.) ThermoFisher Scientific BP169-212
Ammonium peroxodisulphate (APS) ≥98%, Pro-Pure, Proteomics Grade VWR M133-25G
Sigmacote Sigma-Aldrich SL2-100ML
N,N,N',N'-Tetramethylethylenediamine (TEMED) ≥99%, Ultrapure VWR 0761-25ML Review Material Safety Data Sheets
Adjustable Slab Gel Systems, Expedeon VWR ASG-400
Vertical Gel Wrap™ Glass Plate Sets, 16.5 x 14.5cm VWR NGP-125NR
Vertical Gel Wrap™ Glass Plate Sets, 16.5 x 22.0cm VWR NGP-200NR
Vertical Gel Wrap™ Glass Plate Sets, 16.5 x 38.7cm VWR NGP-400NR
GE Storage Phosphor Screens Sigma-Aldrich GE28-9564
Typhoon™ FLA 7000 Biomolecular Imager GE Healthcare 28-9610-73 AB
Beckman Coulter LS6500 Liquid Scintillation Counter GMI 8043-30-1194
C1000 Touch Thermal Cycler ThermoFisher Scientific
QuantStudio 6 Flex Real-Time PCR Systems ThermoFisher Scientific

References

  1. Zhuang, Y., Weiner, A. M. A compensatory base change in U1 snRNA suppresses a 5′ splice site mutation. Cell. 46 (6), 827-835 (1986).
  2. Scotti, M. M., Swanson, M. S. RNA mis-splicing in disease. Nature Review Genetics. 17 (1), 19-32 (2016).
  3. Ward, A. J., Cooper, T. A. The pathobiology of splicing. Journal of Pathology. 220 (2), 152-163 (2010).
  4. Scalet, D., et al. Disease-causing variants of the conserved +2T of 5′ splice sites can be rescued by engineered U1snRNAs. Human Mutatation. 40 (1), 48-52 (2019).
  5. Yamazaki, N., et al. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5′-splice site mutation of human cathepsin A gene. Gene. 677, 41-48 (2018).
  6. Yanaizu, M., Sakai, K., Tosaki, Y., Kino, Y., Satoh, J. I. Small nuclear RNA-mediated modulation of splicing reveals a therapeutic strategy for a TREM2 mutation and its post-transcriptional regulation. Science Reports. 8 (1), 6937 (2018).
  7. Balestra, D., et al. Splicing mutations impairing CDKL5 expression and activity can be efficiently rescued by U1snRNA-based therapy. International Journal of Molecular Sciences. 20 (17), 20174130 (2019).
  8. Donadon, I., et al. Exon-specific U1 snRNAs improve ELP1 exon 20 definition and rescue ELP1 protein expression in a familial dysautonomia mouse model. Human Molecular Genetics. 27 (14), 2466-2476 (2018).
  9. Desjardins, P., Conklin, D. NanoDrop microvolume quantitation of nucleic acids. Journal of Visualized Experiments. (45), e2565 (2010).
  10. Summer, H., Gramer, R., Droge, P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). Journal of Visualized Experiments. (32), e1485 (2009).
  11. Dominski, Z., Kole, R. Selection of splice sites in pre-mRNAs with short internal exons. Molecular Cell Biology. 11 (12), 6075-6083 (1991).
  12. Amir-Ahmady, B., Boutz, P. L., Markovtsov, V., Phillips, M. L., Black, D. L. Exon repression by polypyrimidine tract binding protein. RNA. 11 (5), 699-716 (2005).
  13. Le Guedard-Mereuze, S., et al. Sequence contexts that determine the pathogenicity of base substitutions at position +3 of donor splice-sites. Human Mutation. 30 (9), 1329-1339 (2009).
  14. Sharma, S., Wongpalee, S. P., Vashisht, A., Wohlschlegel, J. A., Black, D. L. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes and Development. 28 (22), 2518-2531 (2014).
  15. Steitz, J. A., et al. . Functions of the abundant U-snRNPs. Structure and function of major and minor small nuclear ribonucleoprotein particles. , 115-154 (1988).
  16. Fortes, P., et al. Inhibiting expression of specific genes in mammalian cells with 5′ end-mutated U1 small nuclear RNAs targeted to terminal exons of pre-mRNA. Proceedings of the National Academy of Sciences U.S.A. 100 (14), 8264-8269 (2003).
  17. Roca, X., et al. Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes and Development. 26 (10), 1098-1109 (2012).
  18. Roca, X., Krainer, A. R. Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nature Structural Molecular Biology. 16 (2), 176-182 (2009).
  19. Taladriz-Sender, A., Campbell, E., Burley, G. A. Splice-switching small molecules: A new therapeutic approach to modulate gene expression. Methods. 167, 134-142 (2019).
  20. Hamid, F. M., Makeyev, E. V. A mechanism underlying position-specific regulation of alternative splicing. Nucleic Acids Research. 45 (21), 12455-12468 (2017).
  21. Martelly, W., et al. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. RNA Biology. , 1-18 (2021).
check_url/fr/63014?article_type=t

Play Video

Citer Cet Article
Wong, J., Martelly, W., Sharma, S. A Reporter Based Cellular Assay for Monitoring Splicing Efficiency. J. Vis. Exp. (175), e63014, doi:10.3791/63014 (2021).

View Video