Summary

黄金Nanostar合成银种子介导的生长方法

Published: January 15, 2012
doi:

Summary

我们合成了星形黄金nanostars使用银种子介导的增长方式。 nanostars直径范围从200到300 nm,并提示7日至10不等。纳米粒子具有广泛的表面等离子体共振模式在近红外的中心。

Abstract

纳米级胶体的物理,化学和光学特性取决于他们的物质组成,大小和形状1-5。有极大的兴趣,在光热消融,药物输送和许多其他医学领域的应用中使用的纳米胶体。黄金特别是因为它的低毒性 7-9 。金属纳米胶体的财产是他们能有一个强有力的表面等离子体共振 10 。表面等离子体共振模式的峰值取决于金属纳米胶体的结构和组成。由于表面等离子体共振模式是与光的刺激,有必要在近红外生物组织透射率是最大的 11,12峰吸光度。

我们提出了一个方法来合成星形胶体金,又称星形13-15纳米粒子或nanostars 16。这种方法是基于作为olution含银种子是用来作为核剂的胶体金17-22各向异性增长。扫描电子显微镜(SEM)分析所产生的金胶体的结果显示,70%的纳米结构nanostars。其余30%的颗粒无定形集群decahedra和菱形。在近红外(840 nm)的吸收峰的nanostars检测。因此,我们的方法生产的黄金nanostars适用于生物医学应用,特别是光热消融。

Protocol

1。银种子准备准备通过利用一个任意的质量和混合10毫升的去离子(DI)水的原液的硝酸银 (硝酸银)。计算的解决方案的摩尔。保持在一个黑暗的地方隔离开光的解决方案。 添加柠檬酸钠三元14.7毫克(钠3 C 6 H 5 O 7)10毫升去离子水,使一个5毫米的解决方案。摇动小瓶直至粉末溶解。 10毫升去离子水15.1毫克的硼氢化钠(硼氢化…

Discussion

在这项工作中,我们提出了一个方法来合成黄金nanostars使用银种子。我们发现,银种子产量的70%nanostars生产。 nanostars近红外吸收峰,对应其表面等离子体共振模式,800纳米和850纳米,23间为中心的。这些物业允许使用医学领域的应用24日至26日 ,如光热消融,我们的黄金nanostars。

一个方法之间的主要区别在这里所说的其他方法是使用,而不是黄金白银种子。…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了国家科学基金会为材料的研究和教育伙伴关系(PREM)批准号:DMR – 0934218。它也支持奖号码为国家研究资源中心2G12RR013646 – 11。内容完全是作者的责任,并不代表官方意见的国家研究资源或国家卫生研究院中心。

Materials

Name of the reagent Company Catalogue number Purity
Sodium citrate tribasic dehydrate Sigma S4641 99.0 %
Silver nitrate Aldrich 204390 99.9999 %
Sodium borohydride Aldrich 213462 99 %
L-Ascorbic acid Sigma-Aldrich 255564 99+ %
Gold chloride trihydrate Aldrich 520918 99.9+ %
Hexadecyltrimethylammonium bromide (CTAB) Sigma H6269  
Name of equipment Company Comments
JEOL 2010-F JEOL Transmission electron microscope
Hitachi S-5500 Hitachi Used in scanning electron microscope mode
Olis Cary-14 spectrophotometer Olis Spectrophotometer

Riferimenti

  1. Irimpan, L., Nampoori, V. P. N., Radhakrishnan, P., Krishnan, B., Deepthy, A. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO. Journal of Applied Physics. 103, (2008).
  2. Sharma, V., Park, K., Srinivasarao, M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports. 65, 1-38 (2009).
  3. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research. 34, 257-2564 (2001).
  4. Daniel, M. C., Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews. 104, 293-346 (2004).
  5. Burda, C., Chen, X., Narayanan, R., El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical reviews. 105, 1025-1102 (2005).
  6. Hu, M., Chen, J. Y. X., Li, J. Y., Au, L., Hartland, G. V., Li, X. D., Marquez, M., Xia, Y. N. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews. 35, 1084-1094 (2006).
  7. Seo, J. T., Yang, Q., Kim, W. J., Heo, J., Ma, S. M., Austin, J., Yun, W. S., Jung, S. S., Han, S. W., Tabibi, B., Temple, D. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Opt. Lett. 34, 307-309 (2009).
  8. Jeong, S., Choi, S. Y., Park, J., Seo, J. -. H., Park, J., Cho, K., Joo, S. -. W., Lee, S. Y. Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. Journal of Materials Chemistry. 21, 13853-13859 (2011).
  9. Huang, X., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2, 681-693 (2007).
  10. Link, S., El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry. 19, 409-453 (2000).
  11. El-Sayed, I. H., Huang, X. H., El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters. 239, 129-135 (2006).
  12. O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters. 209, 171-176 (2004).
  13. Nehl, C. L., Liao, H. W., Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Letters. 6, 683-688 (2006).
  14. Pazos-Perez, N., Rodriguez-Gonzalez, B., Hilgendorff, M., Giersig, M., Liz-Marzan, L. M. Gold encapsulation of star-shaped FePt nanoparticles. Journal of Materials Chemistry. 20, 61-64 (2010).
  15. Sahoo, G. P., Bar, H., Bhui, D. K., Sarkar, P., Samanta, S., Pyne, S., Ash, S., Misra, A. Synthesis and photo physical properties of star shaped gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. , 375-371 (2011).
  16. Senthil Kumar, P., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., Garcia de Abajo, F. J., Liz-Marzan, L. M. High-yield synthesis and optical response of gold nanostars. Nanotechnology. 19, (2008).
  17. Goodrich, G. P., Bao, L. L., Gill-Sharp, K., Sang, K. L., Wang, J., Payne, J. D. Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. Journal of Biomedical Optics. 15, (2010).
  18. Zhang, D., Neumann, O., Wang, H., Yuwono, V. M., Barhoumi, A., Perham, M., Hartgerink, J. D., Wittung-Stafshede, P., Halas, N. J. Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH. Nano Lett. 9, 666-671 (2009).
  19. Alkilany, A. M., Nagaria, P. K., Hexel, C. R., Shaw, T. J., Murphy, C. J., Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 5, 701-708 (2009).
  20. Sun, L., Liu, D., Wang, Z. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir. 24, 10293-10297 (2008).
  21. Park, J., Estrada, A., Sharp, K., Sang, K., Schwartz, J. A., Smith, D. K., Coleman, C., Payne, J. D., Korgel, B. A., Dunn, A. K., Tunnell, J. W. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt. Express. 16, 1590-1599 (2008).
  22. Nikoobakht, B., El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials. 15, 1957-1962 (2003).
  23. Hao, F., Nehl, C. L., Hafner, J. H., Nordlander, P. Plasmon resonances of a gold nanostar. Nano Letters. 7, 729-732 (2007).
  24. Hao, F., Nordlander, P., Sonnefraud, Y., Dorpe, P. V. a. n., Maier, S. A. Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. ACS Nano. 3, 643-652 (2009).
  25. Sweeney, C. M., Hasan, W., Nehl, C. L., Odom, T. W. Optical Properties of Anisotropic Core-Shell Pyramidal Particles. Journal of Physical Chemistry A. 113, 4265-4268 (2009).
  26. Dickerson, E. B., Dreaden, E. C., Huang, X. H., El-Sayed, I. H., Chu, H. H., Pushpanketh, S., McDonald, J. F., El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters. 269, 57-66 (2008).
  27. Jana, N. R., Gearheart, L., Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B. 105, 4065-4067 (2001).
  28. Jana, N. R., Gearheart, L., Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials. 13, 1389-1393 (2001).
  29. Xiao, J., Qi, L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale. 3, 1383-1396 (2011).
  30. Tao, A. R., Habas, S., Yang, P. Shape control of colloidal metal nanocrystals. Small. 4, 310-325 (2008).
  31. Cole, J. R., Mirin, N. A., Knight, M. W., Goodrich, G. P., Halas, N. J. Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications. Journal of Physical Chemistry C. 113, 12090-12094 (2009).
  32. Choi, J. S., Park, J. C., Nah, H., Woo, S., Oh, J., Kim, K. M., Cheon, G. J., Chang, Y., Yoo, J., Cheon, J. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 47, 6259-6262 (2008).
  33. Chithrani, B. D., Ghazani, A. A., Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters. 6, 662-668 (2006).
check_url/it/3570?article_type=t

Play Video

Citazione di questo articolo
Kereselidze, Z., Romero, V. H., Peralta, X. G., Santamaria, F. Gold Nanostar Synthesis with a Silver Seed Mediated Growth Method. J. Vis. Exp. (59), e3570, doi:10.3791/3570 (2012).

View Video