Summary

Gold Nanostar Synthesis mit einem Silver Seed vermitteltes Wachstum Methode

Published: January 15, 2012
doi:

Summary

Wir synthetisierten sternförmigen Gold nanostars mit einem silbernen Saat vermitteltes Wachstum Methode. Der Durchmesser der nanostars reicht von 200 bis 300 nm und die Anzahl der Spitzen variieren von 7 bis 10. Die Nanopartikel haben eine große Oberflächen-Plasmon-Resonanz-Modus im nahen Infrarot zentriert.

Abstract

Die physikalischen, chemischen und optischen Eigenschaften von Nano-Kolloide sind abhängig von ihrer stofflichen Zusammensetzung, Größe und Form 1-5. Es gibt ein großes Interesse im Umgang mit Nano-Kolloide für photo-thermische Ablation, Drug Delivery und viele andere biomedizinische Anwendungen 6. Gold ist vor allem wegen ihrer geringen Toxizität 7-9 verwendet. Eine Eigenschaft der Metall-Nano-Kolloide ist, dass sie eine starke Oberflächen-Plasmon-Resonanz-10 haben. Der Höhepunkt der Oberflächen-Plasmon-Resonanz-Modus hängt von der Struktur und Zusammensetzung des Metalls Nano-Kolloide. Da die Oberflächen-Plasmon-Resonanz-Modus mit Licht angeregt wird, gibt es einen Bedarf an der Spitze Absorption im nahen Infrarotbereich, wo biologisches Gewebe Transmissivität ist maximal 11, 12 haben.

Wir präsentieren eine Methode zur sternförmigen kolloidalem Gold, auch als sternförmige Nanopartikel 13-15 oder nanostars 16 bekannt zu synthetisieren. Diese Methode beruht auf als Basislösung mit Silber Samen, die als Nukleierungsmittel für anisotropes Wachstum von Gold-Kolloide 17-22 verwendet werden. Rasterelektronenmikroskopie (SEM)-Analyse der resultierenden Goldkolloid zeigte, dass 70% der Nanostrukturen nanostars wurden. Die anderen 30% der Partikel wurden amorphe Cluster Dekaedern und Rauten. Die Absorption Höhepunkt der nanostars erkannt wurde, um im nahen Infrarot (840 nm) werden. So produziert unser Verfahren gold nanostars für biomedizinische Anwendungen geeignet, besonders für Foto-thermischen Ablation.

Protocol

1. Silber Saataufbereitungsanlagen Bereiten Sie eine Stammlösung von Silbernitrat (AgNO 3), indem eine beliebige Masse und das Mischen mit 10 ml deionisiertem Wasser (DI). Berechnen Sie Molarität der Lösung. Halten Sie die Lösung in einem dunklen Ort, um sie vor Licht zu isolieren. Zusatz von 14,7 mg Natriumcitrat tribasischen (Na 3 C 6 H 5 O 7) zu 10 mL VE-Wasser zu einer 5 mM Lösung zu machen. Schütteln Sie die Durchstechflasche, bis das…

Discussion

In dieser Arbeit haben wir eine Methode, um Gold nanostars mit Silber Samen synthetisieren vorgestellt. Wir fanden, dass Silber Samen in einer Ausbeute von 70% der Produktion von nanostars geführt. Die nanostars eine Nah-Infrarot-Absorptions-Peak, entsprechend ihrer Oberflächen-Plasmon-Resonanz-Modus, zwischen 800 nm und 850 nm 7, 23 zentriert. Diese Eigenschaften Eigenschaften ermöglichen es unseren Gold nanostars von Nutzen für biomedizinische Anwendungen 24-26, wie Foto-Thermoablation werden…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von der National Science Foundation Partnerships für Forschung und Bildung in der Materialwirtschaft (PREM) Grant No DMR-0934218 gefördert. Es wurde auch von Preis Anzahl 2G12RR013646-11 von National Center for Research Resources unterstützt. Der Inhalt ist ausschließlich in der Verantwortung der Autoren und nicht unbedingt die offizielle Meinung des National Center for Research Resources oder die National Institutes of Health.

Materials

Name of the reagent Company Catalogue number Purity
Sodium citrate tribasic dehydrate Sigma S4641 99.0 %
Silver nitrate Aldrich 204390 99.9999 %
Sodium borohydride Aldrich 213462 99 %
L-Ascorbic acid Sigma-Aldrich 255564 99+ %
Gold chloride trihydrate Aldrich 520918 99.9+ %
Hexadecyltrimethylammonium bromide (CTAB) Sigma H6269  
Name of equipment Company Comments
JEOL 2010-F JEOL Transmission electron microscope
Hitachi S-5500 Hitachi Used in scanning electron microscope mode
Olis Cary-14 spectrophotometer Olis Spectrophotometer

Riferimenti

  1. Irimpan, L., Nampoori, V. P. N., Radhakrishnan, P., Krishnan, B., Deepthy, A. Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO. Journal of Applied Physics. 103, (2008).
  2. Sharma, V., Park, K., Srinivasarao, M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Materials Science and Engineering: R: Reports. 65, 1-38 (2009).
  3. El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research. 34, 257-2564 (2001).
  4. Daniel, M. C., Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews. 104, 293-346 (2004).
  5. Burda, C., Chen, X., Narayanan, R., El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical reviews. 105, 1025-1102 (2005).
  6. Hu, M., Chen, J. Y. X., Li, J. Y., Au, L., Hartland, G. V., Li, X. D., Marquez, M., Xia, Y. N. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews. 35, 1084-1094 (2006).
  7. Seo, J. T., Yang, Q., Kim, W. J., Heo, J., Ma, S. M., Austin, J., Yun, W. S., Jung, S. S., Han, S. W., Tabibi, B., Temple, D. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Opt. Lett. 34, 307-309 (2009).
  8. Jeong, S., Choi, S. Y., Park, J., Seo, J. -. H., Park, J., Cho, K., Joo, S. -. W., Lee, S. Y. Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. Journal of Materials Chemistry. 21, 13853-13859 (2011).
  9. Huang, X., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2, 681-693 (2007).
  10. Link, S., El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry. 19, 409-453 (2000).
  11. El-Sayed, I. H., Huang, X. H., El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters. 239, 129-135 (2006).
  12. O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters. 209, 171-176 (2004).
  13. Nehl, C. L., Liao, H. W., Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Letters. 6, 683-688 (2006).
  14. Pazos-Perez, N., Rodriguez-Gonzalez, B., Hilgendorff, M., Giersig, M., Liz-Marzan, L. M. Gold encapsulation of star-shaped FePt nanoparticles. Journal of Materials Chemistry. 20, 61-64 (2010).
  15. Sahoo, G. P., Bar, H., Bhui, D. K., Sarkar, P., Samanta, S., Pyne, S., Ash, S., Misra, A. Synthesis and photo physical properties of star shaped gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. , 375-371 (2011).
  16. Senthil Kumar, P., Pastoriza-Santos, I., Rodriguez-Gonzalez, B., Garcia de Abajo, F. J., Liz-Marzan, L. M. High-yield synthesis and optical response of gold nanostars. Nanotechnology. 19, (2008).
  17. Goodrich, G. P., Bao, L. L., Gill-Sharp, K., Sang, K. L., Wang, J., Payne, J. D. Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. Journal of Biomedical Optics. 15, (2010).
  18. Zhang, D., Neumann, O., Wang, H., Yuwono, V. M., Barhoumi, A., Perham, M., Hartgerink, J. D., Wittung-Stafshede, P., Halas, N. J. Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH. Nano Lett. 9, 666-671 (2009).
  19. Alkilany, A. M., Nagaria, P. K., Hexel, C. R., Shaw, T. J., Murphy, C. J., Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 5, 701-708 (2009).
  20. Sun, L., Liu, D., Wang, Z. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir. 24, 10293-10297 (2008).
  21. Park, J., Estrada, A., Sharp, K., Sang, K., Schwartz, J. A., Smith, D. K., Coleman, C., Payne, J. D., Korgel, B. A., Dunn, A. K., Tunnell, J. W. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. Opt. Express. 16, 1590-1599 (2008).
  22. Nikoobakht, B., El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of Materials. 15, 1957-1962 (2003).
  23. Hao, F., Nehl, C. L., Hafner, J. H., Nordlander, P. Plasmon resonances of a gold nanostar. Nano Letters. 7, 729-732 (2007).
  24. Hao, F., Nordlander, P., Sonnefraud, Y., Dorpe, P. V. a. n., Maier, S. A. Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. ACS Nano. 3, 643-652 (2009).
  25. Sweeney, C. M., Hasan, W., Nehl, C. L., Odom, T. W. Optical Properties of Anisotropic Core-Shell Pyramidal Particles. Journal of Physical Chemistry A. 113, 4265-4268 (2009).
  26. Dickerson, E. B., Dreaden, E. C., Huang, X. H., El-Sayed, I. H., Chu, H. H., Pushpanketh, S., McDonald, J. F., El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters. 269, 57-66 (2008).
  27. Jana, N. R., Gearheart, L., Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B. 105, 4065-4067 (2001).
  28. Jana, N. R., Gearheart, L., Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials. 13, 1389-1393 (2001).
  29. Xiao, J., Qi, L. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale. 3, 1383-1396 (2011).
  30. Tao, A. R., Habas, S., Yang, P. Shape control of colloidal metal nanocrystals. Small. 4, 310-325 (2008).
  31. Cole, J. R., Mirin, N. A., Knight, M. W., Goodrich, G. P., Halas, N. J. Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications. Journal of Physical Chemistry C. 113, 12090-12094 (2009).
  32. Choi, J. S., Park, J. C., Nah, H., Woo, S., Oh, J., Kim, K. M., Cheon, G. J., Chang, Y., Yoo, J., Cheon, J. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 47, 6259-6262 (2008).
  33. Chithrani, B. D., Ghazani, A. A., Chan, W. C. W. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters. 6, 662-668 (2006).
check_url/it/3570?article_type=t

Play Video

Citazione di questo articolo
Kereselidze, Z., Romero, V. H., Peralta, X. G., Santamaria, F. Gold Nanostar Synthesis with a Silver Seed Mediated Growth Method. J. Vis. Exp. (59), e3570, doi:10.3791/3570 (2012).

View Video