Summary

对于波长和红/近红外光治疗对氧化应激强度的范围影响的评估方法<em>在体外</em

Published: March 21, 2015
doi:

Summary

Non-coherent Xenon light was passed through narrow-band interference and neutral density filters to deliver light of varying wavelength and intensity to cultured cells. This protocol was used to assess the effects of red/near-infrared light therapy on production of reactive species in vitro: no effects were observed using the tested parameters.

Abstract

红/近红外光疗法(R / NIR-LT),通过激光或发光二极管(LED)的递送,可能通过减少氧化应激改善功能和形态学效果的范围内的中枢神经系统损伤的体内 ,的。然而,在氧化应激的R / NIR-LT的作用已被证明取决于波长或辐射的强度而变化。在比较治疗参数的研究缺乏,由于缺乏能够提供多个波长或强度,适用于通过量高的体外优化研究商用设备。这个协议描述了用于递送光的技术在一定范围的波长和强度,以优化所需的一个给定的损伤模型治疗剂量。我们假设,提供光的方法,其中波长和强度参数可以很容易地被改变,可以促进确定的R / NIR-LT的最佳剂量的减少活性氧(ROS)的体外。

非相干氙光通过窄带干涉滤光片过滤,以提供不同的波长(440,550,670的中心波长和810纳米)和能量密度(8.5×10 -3至3.8×10 -1焦耳/ cm 2)的光的向培养的细胞中。从该装置的光输出被校准以发射治疗相关,等于量子剂量的光的每个波长。检测反应性物质在谷氨酸强调与光处理的细胞,用DCFH-DA和H 2 O 2的敏感的荧光染料。

我们成功地在一个范围内的生理学和治疗相关的波长和强度的光传递,以暴露于谷氨酸作为CNS损伤模型的培养细胞。而R / NIR-LT在当前研究中使用没有施加由培养的细胞产生的活性氧的效果的能量密度,轻的递送方法也适用于其他SYSTEMS包括分离线粒体或多种生理上相关的器官切片培养模型,并且可以用来评估的范围内的氧化代谢的结果的措施的效果。

Introduction

活性氧(ROS)的所需要的各种信号转导途径和细胞代谢的正常反应,包括那些神经保护1。然而,当内源性抗氧化机制无法控制ROS的产生,细胞可能会屈从于氧化应激2,3。损伤后的中枢神经系统,在ROS和氧化应激的存在相关联的增加被认为在损伤4,5的进展显着的作用。尽管用于衰减已评估氧 ​​化应激策略的广泛的数目,目前有用于以下神经外伤6衰减ROS产生和相关的氧化应激在临床使用中没有完全有效,临床相关抗氧化剂的策略。因此氧化应激的衰减仍是治疗介入7的一个重要目标。

后续的改进荷兰国际集团的R / NIR-LT已经报道了在广泛的伤害和疾病,包括减少心肌梗死面积,糖尿病期间肾和肝的并发症,视网膜变性,中枢神经系统损伤和中风8,或许通过减少氧化应激。特别是关于CNS损伤,670nm处光的功效的临床前研究已经显示在视网膜变性9-11,脊髓损伤12,神经元死亡13的模型良好的效果。临床试验已经进行了干性年龄相关性黄斑变性和目前正在进行对于中风14,但是这些试验的结果不出现希望的,或许是由于未能采用有效的治疗参数15。因此,R / NIR-LT并没有被广泛采用作为在神经外伤正常临床实践的一部分,尽管是一种简单的施用,非侵入性的和相对便宜的治疗方法。障碍的临床翻译,包括缺乏CL的早知道行动规范有效的治疗方案16,17和缺乏机制。关于光疗法目前的文献揭示了过多的变化治疗参数相对于照射源(LED或激光),波长( 例如 ,630,670,780,810,830,880,904nm),照射总剂量(焦耳/单位面积),持续时间(曝光时间),定时(前或后损伤),治疗的频率和传递模式(脉冲或连续)8。在研究之间的治疗参数的变化,使比较困难,已经向有关的功效持怀疑态度16贡献。

因此,R / NIR-LT的优化显然需要,与细胞培养系统能够提供必要的比较的多个变量的高通量筛选的机制。然而也有一些市售的照明系统,可以提供足够的灵活性和控制わvelength和强度进行这样的优化实验。市售的LED器件通常是不能够提供多个波长或强度,从而导致研究者使用来自不同制造商,其可以不仅在强度变化的多个LED器件,而且光发射的波长的光谱。我们已通过使用宽带氙光源透过窄带干涉滤光片过滤,从而产生范围内的波长和光的能量密度,从而允许R / NIR-LT的参数密切,精确控制解决了这一问题。

要注意的是治疗的治疗剂量由光子与photoacceptor(发色团),其中在R / NIR-LT的情况下被假定为细胞色素C氧化酶(COX)18相互作用的数目定义是很重要的。输送光子能量随波长;意相等剂量的能量以不同的波长将是玉米珍贵的不同数量的光子的。因此,从装置发射的光被校准以发射相等数目的光子的每个所选择的波长进行测试。我们已开发了可用于递送的R / NIR-LT在一定范围的波长和强度,以细胞在体外的系统和演示来测量递送的R /对ROS产生NIR-LT在细胞经受影响的能力谷氨酸压力。

Protocol

1.光学校正:测量光输出为了制备所述光递送装置,连接宽带光源( 例如 ,氙或钨灯),以适当的电源。定位在光源的前面的准直透镜,以产生的光的准直光束。通过液体热过滤通过的光以从光束去除大部分的热量。根据不同的应用,聚焦准直光束上的入口孔的液体光导的,这提供了更灵活的递送的光的( 例如 ,到一个培养箱)。 在液体光导的另一端,定位一个第?…

Representative Results

使用中性密度滤光片,以照射细胞的范围内的能量密度包含先前证明是有益的体内 (0.3焦耳/厘米2)20 670nm处的光的剂量的光在670nm处的波长传送的输出进行校准。作为在光源增加前中性密度滤光片的数量,强度(W /米2)降低,从而允许更少的光传递到目标区域。表1给出了670nm处的光的从装有一个波长滤光器,光源产生的校正数据,并包括用于ND过滤器的数量和光的作为结?…

Discussion

我们已经成功地适应了精确和校准的光传输系统,以提供一种机制,用于对R / NIR-LT 在体外优化的研究。的R波长和强度的参数/ NIR-LT能够被准确有效地操纵使用这个系统。我们建立了光治疗的细胞并没有导致细胞死亡,尽管ROS没有减少在输送的波长和剂量,在测试的细胞类型。当前系统在670nm处(20.11W /米2)实现的最大强度在过量照射的外显率的先前公布的措施到大鼠脑,其中1.17瓦…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Neurotrauma Research Program (Western Australia). This project is funded through the Road Trauma Trust Account, but does not reflect views or recommendations of the Road Safety Council.

Materials

OxiSelect Intracellular ROS Assay Kit (Green Fluorescence) Cell Biolabs STA-342
Amplex UltraRed Reagent Molecular Probes A36006
300 Watt Xenon Arc Lamp Newport Corporation 6258 Very intense light source, do not look directly into the lamp. Ensure there is sufficient cooling to the lamp whilst it is switched on
USB4000-FL Fluorescence Spectrometer Ocean Optics
CC-3-UV Cosine Corrector for Emission Collection Ocean Optics
200μm diameter quartz fibre optic Ocean Optics
SpectraSuite Spectroscopy Platform Ocean Optics
2300 EnSpire Multimode Plate Reader Perkin Elmer
Pierce BCA Protein Assay Kit Thermo Scientific 23225
Triton X-100 Sigma-Aldrich 9002-93-1 Acute toxicity, wear gloves when handling.
L-Glutamic acid monosodium salt hydrate Sigma-Aldrich 142-47-2 (anhydrous)
Pheochromocytoma rat adrenal medulla (PC12) cells American Type Culture Collection CRL-2522
Roswell Park Memorial Institute (RPMI1640) Media Gibco 11875-119
Fetal Bovine Serum, certified, heat inactivated, US origin Gibco 10082-147 Warm to 37°C in water bath before use
Horse Serum, New Zealand origin Gibco 16050-122 Warm to 37°C in water bath before use
GlutaMAX Supplement Gibco 35050-061 Warm to 37°C in water bath before use
100 mM Sodium Pyruvate Gibco 11360-070 Warm to 37°C in water bath before use
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122 Warm to 37°C in water bath before use
100X MEM Non-Essential Amino Acids Solution Gibco 11140-050 Warm to 37°C in water bath before use
Retinal Muller (rMC1) cells University of California, San Diego
Dulbecco's Modified Eagle Medium (DMEM) Gibco 11965-118 Warm to 37°C in water bath before use
75cm2 Flasks BD Biosciences B4-BE-353136
Poly-L-lysine hydrobromide Sigma-Aldrich 25988-63-0 Aliquot and store at -20°C
Hank's Balanced Salt Solution (HBSS) Gibco 14025-134 Warm to 37°C in water bath before use
Phosphate-Buffered Saline (PBS) Gibco 10010-049 Warm to 37°C in water bath before use
Laminin Mouse Protein, Natural Gibco 23017-015 Aliquot and store at -20°C
1X Neurobasal Medium Gibco 21103-049 Warm to 37°C in water bath before use
Trypan Blue Solution, 0.4% Gibco 15250-061
165U Papain Worthington
L-Cysteine Sigma-Aldrich W326305
Corning 96 well plates, clear bottom, black Corning CLS3603-48EA
Costar Clear Polystyrene 96-Well Plates Untreated; Well shape: Round; Sterile. Costar 07-200-103
Seesaw Rocker Standard lab epuipment
Centrifuge Standard lab epuipment
Neutral Density Filter Paper (0.3) THORLABS
442nm Bandpass Filter THORLABS FL441.6-10
550nm Bandpass Filter THORLABS FB550-10
670nm Bandpass Filter THORLABS FB670-10
810nm Bandpass Filter THORLABS FB810-10e
Unmounted Ø25 mm Absorptive Neutral Density Filters (0.1) THORLABS NE01B
Unmounted Ø25 mm Absorptive Neutral Density Filters (0.2) THORLABS NE02B
Unmounted Ø25 mm Absorptive Neutral Density Filters (0.3) THORLABS NE03B
Unmounted Ø25 mm Absorptive Neutral Density Filters (0.5) THORLABS NE05B
Unmounted Ø25 mm Absorptive Neutral Density Filters (0.6) THORLABS NE06B
Unmounted Ø25 mm Absorptive Neutral Density Filters (1.0) THORLABS NE10B

Riferimenti

  1. Gutterman, D. D. Mitochondria and reactive oxygen species an evolution in function. Circulation research. 97, 302-304 (2005).
  2. Camello-Almaraz, C., Gomez-Pinilla, P. J., Pozo, M. J., Camello, P. J. Mitochondrial reactive oxygen species and Ca2+ signaling. American Journal of Physiology-Cell Physiology. 291, C1082-C1088 (2006).
  3. Kowaltowski, A. J., de Souza-Pinto, N. C., Castilho, R. F., Vercesi, A. E. Mitochondria and reactive oxygen species. Free Radical Biology and Medicine. 47, 333-343 (2009).
  4. Coyle, J. T., Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 262, 689-695 (1993).
  5. Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacology & therapeutics. 81, 163-221 (1999).
  6. Hall, E. D. Antioxidant therapies for acute spinal cord injury. Neurotherapeutics. 8, 152-167 (2011).
  7. Jia, Z., et al. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord. 50, 264-274 (2012).
  8. Fitzgerald, M., et al. Red/near-infrared irradiation therapy for treatment of central nervous system injuries and disorders. Reviews in the Neurosciences. 24, 205-226 (2013).
  9. Rutar, M., Natoli, R., Albarracin, R., Valter, K., Provis, J. 670-nm light treatment reduces complement propagation following retinal degeneration. J Neuroinflammation. 9, 257 (2012).
  10. Eells, J. T., et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proceedings of the National Academy of Sciences. 100, 3439-3444 (2003).
  11. Begum, R., Powner, M. B., Hudson, N., Hogg, C., Jeffery, G. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PloS one. 8, e57828 (2013).
  12. Byrnes, K. R., et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers in surgery and medicine. 36, 171-185 (2005).
  13. Liang, H. L., et al. Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscienze. 139, 639-649 (2006).
  14. Zivin, J. A., et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 40, 1359-1364 (2009).
  15. Lapchak, P. A. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert review of medical devices. 9, 71-83 (2012).
  16. Chung, H., et al. The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering. 40, 516-533 (2012).
  17. Wu, Q., et al. Low-Level Laser Therapy for Closed-Head Traumatic Brain Injury in Mice: Effect of Different Wavelengths. Lasers in surgery and medicine. 44, 218-226 (2012).
  18. Hashmi, J. T., et al. Role of low-level laser therapy in neurorehabilitation. PM&R. 2, S292-S305 (2010).
  19. Fitzgerald, M., et al. Metallothionein-IIA promotes neurite growth via the megalin receptor. Experimental Brain Research. 183, 171-180 (2007).
  20. Fitzgerald, M., et al. Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve. Journal of neurotrauma. 27, 2107-2119 (2010).
  21. Ando, T., et al. Low-level laser therapy for spinal cord injury in rats: effects of polarization. Journal of biomedical. 18, 098002 (2013).
  22. Lanzafame, R. J., et al. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers in surgery and medicine. 39, 534-542 (2007).
  23. Castano, A. P., et al. Low-level laser therapy for zymosan induced arthritis in rats: Importance of illumination time. Lasers in surgery and medicine. 39, 543-550 (2007).

Play Video

Citazione di questo articolo
Giacci, M. K., Hart, N. S., Hartz, R. V., Harvey, A. R., Hodgetts, S. I., Fitzgerald, M. Method for the Assessment of Effects of a Range of Wavelengths and Intensities of Red/near-infrared Light Therapy on Oxidative Stress In Vitro. J. Vis. Exp. (97), e52221, doi:10.3791/52221 (2015).

View Video