Summary

对比成像的小鼠胚胎使用高频超声

Published: March 04, 2015
doi:

Summary

在这里,我们提出了一个协议注入超声微泡造影剂进入活的,孤立的晚期妊娠阶段小鼠胚胎。此方法使灌注参数和使用对比增强高频超声成像的胚胎内血管分子标志物的研究。

Abstract

Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

Introduction

超声造影成像是利用微泡造影剂的可视化和表征血管环境。这些药物可使微循环,血管和心血管功能的无创性评估。此外,气泡的表面的改性可以导致靶向微泡结合到内皮的生物标志物,其表现在血管生成,动脉粥样硬化和炎症1,2-使得可能血管事件的分子超声成像临床前应用中。超声造影,因此可以用来识别影响健康和患病的血管状态3-5的复杂和多样的环境。

在多年以前数,微泡成像工具的兴趣已经扩展到通用的小鼠胚胎模型。哺乳动物的发展模式,引入微泡成胚胎血管增强生理显影循环系统( 例如 ,血流量,心输出量),并在转基因箱子和心脏疾病6,7的靶向突变体小鼠模型,研究可能会产生见解因素如何遗传改变心血管功能。事实上,定量和定性的2D胚胎脑血管分析已经实现8。另外,小鼠胚胎呈现为用于检查靶向微泡的血管标记物的结合在体内的优良模型。 Bartelle 9,例如,引入了抗生物素微泡成胚胎心室评估目标锁定在Biotag,生物素化酶BirA转基因胚胎具有约束力,并检查血管解剖。的杂合和纯合小鼠模型的产生也可被用作替代物肿瘤模型研究,目的来定义分子超声波的定量性质 – 在把这种技术应用到临床的重要基准。

<p cl屁股="“jove_content”">微泡是最经常通过心内注射入单个的胚胎通过剖腹8-10暴露引入到胚胎循环。 在子宫内注射,但是,面临着许多挑战。这些包括喷射引导,有必要以对抗在母亲和形象化胚胎运动,维护血流动力学生存能力在母亲和形象化胚胎,寻址麻醉和并发症引起的出血11的长期影响。因此,调查的目标是开发用于注射微泡成隔离的生活晚期胚胎12的技术。这个选项提供了更多的自由,在喷射控制和定位,所述成像平面的再现无阻碍,并简化图像分析和定量方面。

在本研究中,我们概述了一种新的方法用于注射微泡到活鼠胚胎FOř研究微泡动力学行为和的目的​​,正在学靶向微泡结合的内源性内皮表面标记。非线性对比度特定超声成像是用于测量的一些基本灌注参数包括峰增强(PE),洗入速率和达峰时间(TTP)中分离的E17.5胚胎。我们还表明,胚胎模型用于评估的功能的转基因小鼠模型,其中内皮糖蛋白是一种临床上相关的目标胚胎内皮糖损失分子超声波的定量性质的有效性,由于其高表达在血管内皮细胞在血管生成活性的13位点。的内皮糖蛋白靶向(MB E),大鼠同种型的IgG 2控制(MB C)和不相关的(MB U)的微泡粘附在杂内皮糖蛋白英文+/-)和纯合子内皮糖蛋白英文+ / +)表达的胚胎进行了评价。目标宾迪分析吴透露,超声分子能够内皮糖蛋白的基因型之间的区别,并与受体密度,以量化的超分子水平。

Protocol

注:在本研究中进行的实验程序批准的动物护理委员会森尼布鲁克研究所(多伦多,安大略省,加拿大)。为人道对待动物的程序必须在任何时候都必须遵守。假定研究者被训练在超声成像系统的基本操作。该协议最适合两个人。 1.动物模型队友CD-1雄性和雌性小家鼠获得野生型胚胎灌注研究。 分子影像学研究,采用129 /奥拉起源的胚胎干细胞生成工程+/-…

Representative Results

超声造影剂到子宫外小鼠胚胎的注射依赖于活,晚期妊娠阶段从子宫和维持生存力在注射和相关的超声成像的过程中胚胎的成功分离。一旦胚胎已形象化和定位, 如图1中 ,小心注射造影剂到胚胎脉管系统是可能的。一个E17.5小鼠胚胎的一个典型的B模式超声图像示于图2A中 。洗入微泡和相应的增强中,下腔静脉,心脏,大脑,并且在整个动物可以利用非线性对比度…

Discussion

超声造影剂注入晚期妊娠小鼠胚胎和非线性对比度的图像被收购来衡量灌注参数和有针对性的微泡结合。内胚胎脉管系统的微泡的成功的成像依赖于许多因素,第一个是胚胎的生存能力。所有设备和装置,以减少所需的胚胎的分离从子宫到注射开始时预先准备的。由于单次或重复暴露于麻醉对胚胎的小鼠的影响还没有被详细研究,在母亲的使用麻醉被避免前牺牲16。期间胚胎隔离,这是重…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Terry Fox Program of the National Cancer Institute of Canada.

Materials

Reagents Company Catalog Number Comments/Description
Antibodies (biotinylated, eBioscience) Antibody choice depends on the experiment
      rat isotype IgG2 control eBioscience 13-4321-85 This antibody/microbubble combination is often required as experimental control 
      biotin anti-mouse CD309 eBioscience 13-5821-85
Biotinylated rat MJ 7/18 antibody to mouse endoglin In house hybridoma Outside antibodies may also be appropriate: we  have used eBioscience (13-1051-85 ) in the past
Distilled water
Embryo media
     500 mL Dulbecco’s Modified Eagle’s Medium with high glucose Sigma D5796
     50 mL Fetal Bovine Serum ATCC 30-2020 lot # 7592456
     Hepes  Gibco 15630 5mL, 1M
     Penicillin-Streptomycin  Gibco 15140-122 5 mL, 10,000 units Pen., 10,000 ug Strep
Ethanol, 70%
Ice
Paraformaldehyde Sigma 76240 4%
Phosphate Buffered Saline [1x]  Sigma D8537 1x, w/o calcium chloride & magnesium chloride
Pregnant mouse, CD-1 Charles River Laboratories Inc. 
0.9% sodium chloride (saline) Hospira 0409-7984-11
Ultrasound contrast agent, target ready and untargeted MicroMarker; VisualSonics Inc.
Ultrasound gel (Aquasonic 100, colourless) CSP Medical 133-1009
Equipment
Cell culture plates (4) :  100×20 mm Fisher Scientific 08-772-22
Cell culture plates (12) : 60×15 mm Sigma D8054
Centrifuge Sorvall Legend RT centrifuge 
Conical tubes, 50 mL BD Falcon VWR 21008-938
Diluent Beckman Coulter Isoton II Diluent, 8448011
Dissection scissors (Wagner) Fine Science Tools Wagner 14068-12
Forceps (2), Dumont SS (0.10×0.06 mm) Fine Science Tools 11200-33
Forceps, splinter VWR 25601-134
Glass beaker, 2 L (Griffin Beaker) VWR 89000-216
Glass capillaries, 1×90 mm GD-1 with filament Narishige GD-1
Glass needle puller Narishige PN-30
Gloves Ansell 4002
Gross anatomy probe Fine Science Tools 10088-15
Hot plate VWR 89090-994
Ice bucket Cole Parmer RK 06274-01
Imaging Platform VisualSonics Inc. Integrated Rail System
Light source, fiber-optic Fisher Scientific 12-562-36 Ideally has adjustable arms
Luers (12), polypropylene barbed female ¼-28 UNF thread Cole Parmer 45500-30
Micro-ultrasound system, high-frequency VisualSonics Inc. Vevo2100
Needles, 21 gauge  (1”) VWR 305165
Particle size analyzer Beckman Coulter Multisizer 3 Coulter Counter
Perforated spoon (Moria) Fine Science Tools MC 17 10373-17
Pins (6), black anodized minutien 0.15 mm Fine Science Tools 26002-15
Pipettors [2-20 uL, 20-200uL, 100-1000uL] Eppendorf Research Plus  adjustable 3120000038;       3120000054;       3120000062
Pipettor tips [2-200uL, 50-1000uL] Eppendorf epT.I.P.S.                   22491334;             022491351
Scissors
Sylgard 184 Silicone Elastomer Kit Dow Corning
Tubing, Tygon laboratory 1/32×3/32” VWR 63010-007
Wooden applicator stick (swab, cotton head) VWR CA89031-270
Surgical microscope 5-8x magnification Fisher Scientific Steromaster
Syringes, 1 mL Normject Fisher 14-817-25
Syringes (10), 30 mL VWR CA64000-041
Syringe infusion pump  Bio-lynx  NE-1000
Thermometer, -20-110oC VWR 89095-598
Timer VWR 33501-418
Tubes, Eppendorf VWR 20170-577
Tube racks (3) VWR 82024-462
Ultrasound transducer, 20 MHz VisualSonics Inc. MS250
Vannas-Tubingen, angled up Fine Science Tools 15005-08

Riferimenti

  1. Voigt, J. U. Ultrasound molecular imaging. Methods. 48 (2), 92-97 (2009).
  2. Klibanov, A. Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging. Medical Biological Engineering Computing. 47 (8), 875-882 (2009).
  3. Cosgrove, D., Lassau, N. Imaging of perfusion using ultrasound. European Journal Of Nuclear Medicine And Molecular Imaging. 37 (S1), 65 (2010).
  4. Williams, R., et al. Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: A proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology. 260 (2), 581 (2011).
  5. Burns, P. N., Wilson, S. R. Focal liver masses: Enhancement patterns on contrast-enhanced Images – Concordance of US scans with CT scans and MR images. Radiology. 242 (1), 162 (2006).
  6. Phoon, C. K. L., Aristizabal, O., Turnbull, D. H. 40 MHz doppler characterization of umbilical and dorsal aortic Blood flow in the early mouse embryo. Ultrasound. In Medicine And Biology. 26 (8), 1275-1283 (2000).
  7. Phoon, C. K. L., Aristizabal, O., Turnbull, D. H. Spatial velocity profile in mouse embryonic aorta and doppler-derived volumetric flow: A preliminary model. Am J Physiol Heart Circ Physiol. 283, H908-H916 (2002).
  8. Aristizábal, O., Williamson, R., Turnbull, D. H. . 12A-4 in vivo 3D contrast-enhanced imaging of the embryonic mouse vasculature. Paper presented at Ultrasonics Symposium. , (2007).
  9. Bartelle, B. B., et al. Novel genetic approach for in vivo vascular imaging in mice. Circ.Res. 110 (7), 938-947 (2012).
  10. Endoh, M., et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Molecular Therapy. 5 (5), 501-508 (2002).
  11. Yamada, M., Hatta, T., Otani, H. Mouse exo utero development system: Protocol and troubleshooting. Congenital Anomalies. 48 (4), 183-187 (2008).
  12. Denbeigh, J. M., Nixon, B. A., Hudson, J. M., Purin, M. C., Foster, F. S. VEGFR2-targeted molecular imaging in the mouse embryo: An alternative to the tumor model. Ultrasound in medicine and biology. 40 (2), 389-399 (2014).
  13. Paauwe, M., Dijke, t. e. n., P, L. J. A. C., Hawinkels, Endoglin for tumor imaging and targeted cancer therapy. Expert Opinion On Therapeutic Targets. 17 (4), 421-435 (2013).
  14. Bourdeau, A., Faughnan, M. E., Letarte, M. Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia. Trends Cardiovasc. Med. 10 (7), 279-285 (2000).
  15. Whiteley, K. J., Adamson, S. L., Pfarrer, C. D. Vascular corrosion casting of the uteroplacental and fetoplacental vasculature in mice. Placenta And Trophoblast: Methods And Protocols. 121 (121), 371-392 (2006).
  16. Kulandavelu, S., et al. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR Journal. 47 (2), 103-10 (2006).
  17. Kalaskar, V. K., Lauderdale, J. D. Mouse embryonic development in a serum-free whole embryo culture system. Journal of Visualized Experiments. 85, (2014).
  18. Willmann, J. K., et al. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. The Journal of Nuclear Medicine. 51 (3), 433-440 (2010).
  19. Deshpande, N., Ren, Y., Foygel, K., Rosenberg, J., Willmann, J. K. Tumor angiogenic marker expression levels during tumor growth: Longitudinal assessment with molecularly targeted microbubbles and US imaging. Radiology. 258 (3), 804-811 (2011).
  20. Lyshchik, A., et al. Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. Journal Of Ultrasound In Medicine. 26 (11), 1575-1586 (2007).
  21. Jerkic, M., et al. Endoglin regulates nitric oxide-dependent vasodilatation. The FASEB Journal. 18 (3), 609-611 (2004).
  22. Denbeigh, J. M., Nixon, B. A., Lee, J. J. Y., et al. . Contrast-Enhanced Molecular Ultrasound Differentiates Endoglin Genotypes in Mouse Embryos. , (2014).
  23. Adamson, S. L., Lu, Y., Whiteley, K. J., et al. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol. 250, 358-35 (2002).
  24. Needles, A., et al. Nonlinear contrast imaging with an array-based micro-ultrasound system. Ultrasound. Medicine Biology. 36 (12), 2097 (2010).
  25. Watson, E. D., Cross, J. C. Development of structures and transport functions in the mouse placenta. Physiology. 20 (3), 180-193 (2005).
  26. Shalaby, F., Rossant, J., Yamaguchi, T. P., et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 376, 62-66 (1995).
  27. Kwee, L., Baldwin, H. S., Shen, H. M., et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 121, (1995).
  28. Mercurio, A. M. Lessons from the α2 integrin knockout mouse. The American journal of pathology. , 161-163 (2002).
  29. Hodivala-Dilke, K. αvβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol. 20, 514-519 (2008).
  30. Pysz, M. A., Gambhir, S. S., Willmann, J. K. Molecular imaging: current status and emerging strategies. Clinical radiology. 65, 500-516 (2010).
  31. Cybulsky, M. I., Iiyama, K., Li, H., et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 107, 1255-1262 (2001).
  32. Xu, H., Gonzalo, J. A., St Pierre, ., Y, , et al. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med. 180, 95-109 (1994).
  33. Gerwin, N., Gonzalo, J. A., Lloyd, C., et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2-deficient mice results in extended hyperresponsiveness. Immunity. 10, 9-19 (1999).
  34. Johnson, R. C., Mayadas, T. N., Frenette, P. S., et al. Blood cell dynamics in P-selectin-deficient mice. Blood. 86, 1106-1114 (1995).
  35. Corrigan, N., Brazil, D., McAuliffe, F. High-frequency ultrasound assessment of the murine heart from embryo through to juvenile. Reproductive Sciences. 17 (2), 147-14 (2010).
  36. Turnbull, D. H., Bloomfield, T. S., Baldwin, H. S., Foster, F. S., Joyner, A. L. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci U S A. 92, 2239-2243 (1995).
  37. Greco, A., Mancini, M. L., Gargiulo, S., et al. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging. Journal of Biomedicine and Biotechnology. 2012, (2012).
  38. Pysz, M. A., Guracar, I., Foygel, K., Tian, L., Willmann, J. K. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging. Angiogenesis. 15, 433-442 (2012).
  39. Larina, I. V., et al. Live imaging of blood flow in mammalian embryos using doppler swept-source optical coherence tomography. J.Biomed.Opt. 13 (6), 060506-06 (2008).
  40. Garcia, M. D., Udan, R. S., Hadjantonakis, A. K., Dickinson, M. E. . Live imaging of mouse embryos. 4 (4), 104-10 (2011).
  41. Teichert, A., et al. Endothelial nitric oxide synthase gene expression during murine embryogenesis. Commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circulation Research. 103 (1), 24-33 (2008).
  42. Walls, J. R., Coultas, L., Rossant, J., Henkelman, R. M. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One. 3 (8), (2008).
check_url/it/52520?article_type=t

Play Video

Citazione di questo articolo
Denbeigh, J. M., Nixon, B. A., Puri, M. C., Foster, F. S. Contrast Imaging in Mouse Embryos Using High-frequency Ultrasound. J. Vis. Exp. (97), e52520, doi:10.3791/52520 (2015).

View Video