Summary

病毒载体的基因治疗的小鼠视网膜色素上皮缘方针,视网膜下注射

Published: August 07, 2015
doi:

Summary

Subretinal injection is a surgical technique for effective gene delivery to retinal pigment epithelium in the mouse eye. Here we describe an easy and replicable method for subretinal injection of viral vectors to retinal pigment epithelium in experimental mice.

Abstract

The eye is a small and enclosed organ which makes it an ideal target for gene therapy. Recently various strategies have been applied to gene therapy in retinopathies using non-viral and viral gene delivery to the retina and retinal pigment epithelium (RPE). Subretinal injection is the best approach to deliver viral vectors directly to RPE cells. Before the clinical trial of a gene therapy, it is inevitable to validate the efficacy of the therapy in animal models of various retinopathies. Thus, subretinal injection in mice becomes a fundamental technique for an ocular gene therapy. In this protocol, we provide the easy and replicable technique for subretinal injection of viral vectors to experimental mice. This technique is modified from the intravitreal injection, which is widely used technique in ophthalmology clinics. The representative results of RPE/choroid/scleral complex flat-mount will help to understand the efficacy of this technique and adjust the volume and titer of viral vectors for the extent of gene transduction.

Introduction

在眼科,基因治疗已成为治疗方式在单基因遗传性视网膜病变。存在与基因在视网膜色素上皮细胞(RPE)包括莱伯先天性amurosis 1,2,色素性视网膜炎3,和脉络膜4相关遗传性视网膜病变。基因治疗的研究领域正在扩大在临床前研究和使用病毒载体的临床试验,例如机相关病毒(AAV), 慢病毒 (LV)和腺病毒 (广告)5。不同的病毒载体具有不同的取向,在视网膜上。一种安全有效的基因治疗,病毒载体应仔细根据靶细胞和靶基因。

基因递送途径也很重要,为有效的基因递送至靶细胞,因此,应该仔细选择为好。用于眼内递送病毒载体的两种最常见的方法是subretINAL注射玻璃体内注射6。后者,玻璃体内注射,已被广泛地用于药物输送到治疗在湿性年龄相关性黄斑变性(AMD)和黄斑水肿脉络膜新生血管形成,糖尿病性视网膜病7。玻璃体内途径提供的病毒载体到玻璃体和视网膜内层的暴露,但向量到外视网膜的扩散受到限制。另一方面,在视网膜下途径提供直接递送病毒载体到视网膜和RPE之间的潜在空间,诱导局部疱。因此,视网膜下注射是目前被认为用于靶向感光细胞和RPE一个更有效的路由。在手术方式上,玻璃体被选为安全区的玻璃体内注射,避免在人类患者视网膜损伤。通过简单地修改这个方法给小鼠,我们可以通过角膜缘视网膜下的方法或intravireally注入病毒载体。

在这个视频本文中,我们证明视网膜下注射病毒载体的容易且方便的方法到小鼠视网膜色素上皮。在后方缘用30 G 1/2单针穿刺后,一个33克钝针配备微升注射器插入通过角膜缘穿刺部位的视网膜下腔。 1.5病毒载体 – 2微升体积被注入到视网膜和RPE诱导视网膜下泡之间的潜在空间。这个过程可以在直视下使用手术显微镜下进行。反复练习将保证复制的结果,即使没有气泡形成的直接可视化。这将有助于研究人员进行精确和节省时间用于实验的小鼠视网膜色素上皮基因传递。

Protocol

对动物的所有实验均按照研究协会在视觉与眼科声明使用动物的眼科和视觉研究的进行,以及指导方针和条例规定由首尔国立大学机构动物护理和使用委员会和国立首尔大学附属医院生物安全委员会。 1.准备注射套件和病毒载体制备微升注射器配备有33克钝针用环氧乙烷气体消毒。稀释在PBS中的病毒载体用于在微管( 即,1×10 6 TU /微升)在足够滴度。?…

Representative Results

通过该协议评估视网膜下注射病毒基因转导的功效,我们用巨细胞病毒启动子表达GFP和RFP的指标市售LV载体。根据研究目的合适的时间后,眼睛被摘除。对于代表性的结果,眼睛被剜出10周20周视网膜下注射后。完全除去使用上述方法的视网膜后,RPE /脉络膜/巩膜复杂的平面安装在荧光显微镜下进行了评价。代表性结果示于图3A(与完全除去视网膜的很好的例子)和图3B(?…

Discussion

在这个视频文章中,我们介绍了缘,方法视网膜下注射技术详细RPE /脉络膜/巩膜平座的代表性成果。这是一个简单而方便的技术为视网膜下注射病毒载体进入RPE。的气泡形成在注射过程中直接​​可视化是准确的交货期为初学者的一个重要步骤。有在Journal引入可视化实验8-10中某些视网膜下注射技术。视网膜下空间是视网膜和RPE之间的潜在空间,因此有两种可能的路由接近视网膜下的空间…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由首尔国立大学研究资助(800-20140542)的支持下,先锋研究计划NRF / MEST的(2012-0009544),和NRF / MEST的生物信号分析技术创新计划(2009-0090895),及NRF / MEST的格兰特(2015M3A9E6028949)。

Materials

TWEEZERS DUMONT #5 11cm DUMOSTAR 0.1 x 0.06 mm TIPS WPI 500233
VANNAS Scissors S/S, 105mm WPI 555583S
33G Blunt needle WPI NF33BL-2
NanoFil Syringe, 10 microliter  WPI NANOFIL
RPE-KIT WPI RPE-KIT For easy one hand injection
30Gx1/2 (0.3mmx 13mm) BD PrecisionGlideTM Needle BD 305107 Initial puncture for subretinal injection
Microscope Cover Glasses (No. 1 3 mm diameter) Warner Instruments 64-0720  (CS-3R)
Leica operating microscope Leica LM M80
Fluoresecein microscope Nikon Eclipse 80i
Lentivirus Thermo scientific TMO.LV-Ctr Used to dilute vectors
PBS Gibco 10010-015 Used to dilute vectors
Troperin (Phenylephrin 0.5%-Tropicamide 0.5%) Hanmi For dilation
Proparacaine Hydrochloride Ophthalmic Solution USP, 0.5% (Sterile) Bausch&Lomb For topical anesthesia
Healon GV OVD Abbott Medical Optics Inc.
Zoletil 50 (tiletamine hypochloride and zolazepam hypochloride) Virbac For general anesthesia
Rompun® injection (Xylazine HCl) Bayer For general anesthesia

Riferimenti

  1. Maguire, A. M., et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 358 (21), 2240-2248 (2008).
  2. Jacobson, S. G., et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 130 (1), 9-24 (2012).
  3. Conlon, T. J., et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum Gene Ther Clin Dev. 24 (1), 23-28 (2013).
  4. MacLaren, R. E., et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 383 (9923), 1129-1137 (2014).
  5. Trapani, I., Puppo, A., Auricchio, A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res. 43, 108-128 (2014).
  6. Liang, F. Q., Anand, V., Maguire, A. M., Bennett, J. Intraocular delivery of recombinant virus. Methods Mol Med. 47, 125-139 (2001).
  7. Peyman, G. A., Lad, E. M., Moshfeghi, D. M. Intravitreal injection of therapeutic agents. Retina. 29 (7), 875-912 (2009).
  8. Matsumoto, H., Miller, J. W., Vavvas, D. G. Retinal detachment model in rodents by subretinal injection of sodium hyaluronate. J Vis Exp. (79), (2013).
  9. Wert, K. J., Skeie, J. M., Davis, R. J., Tsang, S. H., Mahajan, V. B. Subretinal injection of gene therapy vectors and stem cells in the perinatal mouse eye. J Vis Exp. (69), (2012).
  10. Eberle, D., Santos-Ferreira, T., Grahl, S., Ader, M. Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. J Vis Exp. (84), e50932 (2014).
  11. Sahel, J. A., Roska, B. Gene therapy for blindness. Annu Rev Neurosci. 36, 467-488 (2013).
  12. Allocca, M., et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol. 81 (20), 11372-11380 (2007).
  13. Takahashi, K., et al. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum Gene Ther. 13 (11), 1305-1316 (2002).
  14. Rolling, F., et al. Gene therapeutic prospects in early onset of severe retinal dystrophy: restoration of vision in RPE65 Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Bull Mem Acad R Med Belg. 161 (10-12), 497-508 (2006).
  15. Le Meur, G., et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Ther. 14 (4), 292-303 (2007).
  16. Alexander, J. J., Hauswirth, W. W. Adeno-associated viral vectors and the retina. Adv Exp Med Biol. 613, 121-128 (2008).
  17. Puche, N., et al. Genetic and environmental factors associated with reticular pseudodrusen in age-related macular degeneration. Retina. 33 (5), 998-1004 (2013).
  18. Campochiaro, P. A. Gene transfer for neovascular age-related macular degeneration. Hum Gene Ther. 22 (5), 523-529 (2011).
  19. Park, S. W., et al. Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol Aging. 35 (9), 2013-2020 (2014).
  20. Shin, B., et al. Intracellular cleavage of amyloid beta by a viral protease NIa prevents amyloid beta-mediated cytotoxicity. PLoS One. 9 (6), e98650 (2014).
check_url/it/53030?article_type=t

Play Video

Citazione di questo articolo
Park, S. W., Kim, J. H., Park, W. J., Kim, J. H. Limbal Approach-Subretinal Injection of Viral Vectors for Gene Therapy in Mice Retinal Pigment Epithelium. J. Vis. Exp. (102), e53030, doi:10.3791/53030 (2015).

View Video