Summary

Differentiering af SH-SY5Y human neuroblastomcellelinje

Published: February 17, 2016
doi:

Summary

It is critical in neurobiology and neurovirology to have a reliable, replicable in vitro system that serves as a translational model for what occurs in vivo in human neurons. This protocol describes how to culture and differentiate SH-SY5Y human neuroblastoma cells into viable neurons for use in in vitro applications.

Abstract

Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease.

The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods1-4 and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

Introduction

Muligheden for at anvende in vitro modelsystemer høj grad har styrket områderne neurobiologi og neurovidenskab. Celler i kultur tilvejebringe en effektiv platform til at karakterisere proteiner funktionalitet og molekylære mekanismer bag specifikke fænomener, for at forstå patologien af ​​sygdomme og infektioner, og til at udføre foreløbige drug test vurderinger. I neurobiologi, de vigtigste typer af cellekulturmodeller indbefatter primære neuronale kulturer afledt fra rotter og mus og neuroblastomcellelinier, såsom rotte B35 celler 5, Neuro-2A museceller 6 og rotte PC12-celler 7. Skønt anvendelse af sådanne cellelinier har avanceret feltet betydeligt, er der flere forstyrrende faktorer i forbindelse med håndtering af ikke-humane celler og væv. Disse omfatter forståelse artsspecifikke forskelle i metaboliske processer, fænotyper af sygdomsmanifestation, og patogenese i forhold til mennesker. Det er også vigtigt at bemærke, atre er betydelige forskelle mellem mus og human genekspression og transskription faktor signalering, fremhæver begrænsningerne i gnaver modeller og betydningen af forståelse, som veje er bevaret mellem gnavere og mennesker 8-11. Andre har anvendt anvendelse af humane neuronale cellelinjer, herunder det N-Tera-2 (NT2) humant teratocarcinom cellelinie og inducerbare pluripotente stamceller (iPSCs). Disse cellelinjer giver gode modeller for in vitro-menneskelige systemer. Imidlertid differentiering af NT2 celler med retinsyre (RA) resulterer i dannelsen af en blandet population af neuroner, astrocytter, og radiale gliaceller 12, hvilket nødvendiggør et yderligere oprensningstrin til opnåelse af rene populationer af neuroner. Derudover NT2-celler udviser en meget variabel karyotype 13, med mere end 60 kromosomer i 72% af cellerne. iPSCs demonstrerer variation i differentiering mellem forskellige cellelinjer og varierer i differentiering effektivitet 14.. Det er derfor ønskeligt at have en konsekvent og reproducerbar human neuronal celle model til at supplere disse alternativer.

SH-SY5Y neuroblast-lignende celler er en subklon af den parentale neuroblastomcellelinje SK-N-SH. Den parentale cellelinje blev genereret i 1970 fra en knoglemarvsbiopsi, der indeholder både neuroblast-lignende og epiteliale-lignende celler 15. SH-SY5Y-celler har en stabil karyotype bestående af 47 kromosomer, og kan differentieres fra en neuroblast-lignende tilstand til modne humane neuroner gennem en række forskellige mekanismer, herunder brugen af ​​RA, phorbolestere og specifikke neurotrophiner såsom hjerne-afledt neurotrofisk faktor (BDNF). Forudgående tyder på, at anvendelsen af forskellige metoder kan vælge specifikke neuron undertyper såsom adrenerge, cholinerge og dopaminerge neuroner 16,17. Sidstnævnte aspekt gør SH-SY5Y celler er anvendelige til et væld af neurobiologi eksperimenter.

Indholdsproduktion "> Adskillige undersøgelser har bemærket væsentlige forskelle mellem SH-SY5Y-celler i deres udifferentierede og differentierede tilstande. Når SH-SY5Y-celler er udifferentierede, de hurtigt proliferere og synes at være ikke-polariseret, med meget få, korte processer. De ofte vokser i klumper og udtrykker markører indikative for umodne neuroner 18,19. Når differentieret, disse celler strækker lange, forgrenede processer, fald i proliferation, og i nogle tilfælde polarisere 2,18. Fuldt differentierede SH-SY5Y-celler er tidligere blevet vist at udtrykke et række forskellige markører for modne neuroner, herunder vækst-associeret protein (GAP-43), neuronale kerner (Neun), synaptophysin (SYN), synaptisk vesikel protein II (SV2), neuron specifik enolase (NSE) og mikrotubulus-associeret protein (MAP) 2,16,17,20, og at mangler ekspression af glial markører, såsom glial fibrillært surt protein (GFAP) 4. i yderligere støtte, der differentierede SH-SY5Y-celler represent en homogen neuronal population, fjernelse af BDNF resulterer i cellulær apoptose 4. Dette antyder, at overlevelsen af ​​differentierede SH-SY5Y-celler er afhængig af trofiske faktorer, svarende til modne neuroner.

Anvendelse af SH-SY5Y celler er steget siden subklonen blev etableret i 1978 3. Nogle eksempler på deres anvendelse omfatter undersøger Parkinsons sygdom 17, Alzheimers sygdom 21, og patogenese af virusinfektion, herunder poliovirus 22, enterovirus 71 (EV71) 23,24 , varicella-zoster virus (VZV) 1, humant cytomegalovirus 25, og herpes simplex virus (HSV) 2,26. Det er vigtigt at bemærke, at en række undersøgelser under anvendelse SH-SY5Y-celler har brugt disse celler i deres udifferentierede form, navnlig med hensyn til neurovirology 27-36. Forskellen i den observerede fænotype af udifferentierede versus differentierede SH-SY5Y-celler rejser spørgsmålet om whether den observerede progression af infektion ville være anderledes i modne differentierede neuroner. For eksempel differentierede SH-SY5Y-celler har en højere effektivitet af HSV-1 optagelse versus udifferentierede, prolifererende SH-SY5Y-celler, hvilket kan skyldes en manglende overfladereceptorer, der binder HSV og modulerer post på udifferentierede SH-SY5Y-celler 2. Det er derfor afgørende, at når designe et eksperiment med fokus på test af neuroner in vitro, bør SH-SY5Y celler differentieres for at opnå de mest nøjagtige resultater for oversættelse og sammenligning med in vivo modeller.

Udviklingen af ​​en pålidelig metode til at generere humane neuronale kulturer er bydende nødvendigt at give forskere at udføre translationelle eksperimenter, der præcist modellerer det menneskelige nervesystem. Protokollen præsenteres her er en procedure, der afgrænser den bedste praksis, der stammer fra tidligere metoder 1-4 for at berige for humane neuroner, der differentieredehjælp retinsyre.

Protocol

1. Generelle overvejelser Se tabellen Materialer / Udstyr til en liste over nødvendige reagenser. Udfør alle trin under strenge aseptiske forhold. Brug varme-inaktiveret føtalt bovint serum (hiFBS) for alle medier præparater, der indeholder FBS. At varme inaktivere, varme en 50 ml prøve af FBS ved 56 ° C i 30 minutter, invertere hver 10 min (se også tabel 1). Bemærk: Når FBS anvendes uden varme-inaktivering, epitel-lignende fænotype…

Representative Results

På nuværende tidspunkt er der mange tilfælde inden for neurobiologi og neurovirology hvor udifferentierede SH-SY5Y-celler anvendes som en funktionel model for humane neuroner 27-36, og vigtigere, kan udifferentierede celler mangler fænotyper, såsom optimal viral optagelse 2 der er nødvendige for præcis fortolkning. Det er kritisk, når der anvendes SH-SY5Y-celler eller andre in vitro neuronal system er celler passende differentiering til neuroner, for at opnå data, der er den bedst…

Discussion

Ovennævnte protokol giver en enkel og reproducerbar metode til at generere homogene og levedygtige humane neuronale kulturer. Denne protokol udnytter teknikker og praksis, der integrerer flere tidligere offentliggjorte metoder 1-4 og har til formål at afgrænse den bedste praksis i hver. Differentiering af SH-SY5Y celler afhængig gradvis serum deprivation; tilsætning af retinsyre, neurotrofe faktorer og ekstracellulære matrixproteiner; og seriel opdeling for at vælge for differentierede modne vedhængen…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

We are grateful for the contributions of Yolanda Tafuri in optimizing conditions for SH-SY5Y differentiation, and for the support of Dr. Lynn Enquist, in whose lab this work was initiated. Y. Tafuri contributed the images shown in Figure 3. This work was supported by the NIH-NIAID Virus Pathogens Resource (ViPR) Bioinformatics Resource Center (MLS and L. Enquist) and K22 AI095384 (MLS).

Materials

B-27 Invitrogen 17504-044 See Table 1 for preparation
Brain-Derived Neurotrophic Factor (BDNF) Sigma SRP3014 (10ug)/B3795 (5ug) See Table 1 for preparation
dibutyryl cyclic AMP (db-cAMP) Sigma D0627 See Table 1 for preparation
DMSO ATCC 4-X
Minimum Essential Medium Eagle (EMEM) Sigma M5650
Fetal Bovine Serum (FBS)  Hyclone SH30071.03 See Table 1 for preparation
GlutamaxI Life Technologies 35050-061
Glutamine Hyclone SH30034.01
Potassium Chloride (KCl) Fisher Scientific BP366-1 See Table 1 for preparation
MaxGel Extracellular Matrix (ECM) solution Sigma E0282 See step 11 of the protocol
Neurobasal Life Technologies 21103-049
Penicillin/Streptomycin (Pen/Strep) Life Technologies 15140-122
Retinoic acid (RA) Sigma R2625 Should be stored in the dark at 4° C because this reagent is light sensitive
SH-SY5Y Cells ATCC CRL-2266
0.5% Trypsin + EDTA Life Technologies 15400-054
Falcon 35mm TC dishes Falcon (A Corning Brand) 353001

Riferimenti

  1. Christensen, J., Steain, M., Slobedman, B., Abendroth, A. Differentiated Neuroblastoma Cells Provide a Highly Efficient Model for Studies of Productive Varicella-Zoster Virus Infection of Neuronal Cells. Journal of Virology. 85 (16), 8436-8442 (2011).
  2. Gimenez-Cassina, A., Lim, F., Diaz-Nido, J. Differentiation of a human neuroblastoma into neuron-like cells increases their susceptibility to transduction by herpesviral vectors. Journal of Neuroscience Research. 84 (4), 755-767 (2006).
  3. Biedler, J. L., Roffler-Tarlov, S., Schachner, M., Freedman, L. S. Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. Ricerca sul cancro. 38 (11 Pt 1), 3751-3757 (1978).
  4. Encinas, M., Iglesias, M., et al. Sequential Treatment of SH-SY5Y Cells with Retinoic Acid and Brain-Derived Neurotrophic Factor Gives Rise to Fully Differentiated, Neurotrophic Factor-Dependent, Human Neuron-Like Cells. Journal of Neurochemistry. 75 (3), 991-1003 (2000).
  5. Otey, C. A., Boukhelifa, M., Maness, P. B35 neuroblastoma cells: an easily transfected, cultured cell model of central nervous system neurons. Methods in Cell Biology. 71, 287-304 (2003).
  6. LePage, K. T., Dickey, R. W., Gerwick, W. H., Jester, E. L., Murray, T. F. On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. Critical Reviews in Neurobiology. 17 (1), 27-50 (2005).
  7. Shafer, T. J., Atchison, W. D. Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology. 12 (3), 473-492 (1991).
  8. Yue, F., Cheng, Y., et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 515 (7527), 355-364 (2014).
  9. Cheng, Y., Ma, Z., et al. Principles of regulatory information conservation between mouse and conservation between mouse and human. Nature. 515 (7527), 371-375 (2014).
  10. Stergachis, A. B., Neph, S., et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature. 515 (7527), 365-370 (2014).
  11. Lin, S., Lin, Y., et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America. 111 (48), 17224-17229 (2014).
  12. Coyle, D. E., Li, J., Baccei, M. Regional Differentiation of Retinoic Acid-Induced Human Pluripotent Embryonic Carcinoma Stem Cell Neurons. PLoS ONE. 6 (1), e16174 (2011).
  13. Mostert, M. M., van de Pol, M., et al. Fluorescence in situ hybridization-based approaches for detection of 12p overrepresentation, in particular i(12p), in cell lines of human testicular germ cell tumors of adults. Cancer Genetics and Cytogenetics. 87 (2), 95-102 (1996).
  14. Hu, B. -. Y., Weick, J. P., et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America. 107 (9), 4335-4340 (2010).
  15. Biedler, J. L., Helson, L., Spengler, B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Ricerca sul cancro. 33 (11), 2643-2652 (1973).
  16. Påhlman, S., Ruusala, A. I., Abrahamsson, L., Mattsson, M. E., Esscher, T. Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differentiation. 14 (2), 135-144 (1984).
  17. Xie, H., Hu, L., Li, G. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chinese Medical Journal. 123 (8), 1086-1092 (2010).
  18. Kovalevich, J., Langford, D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in Molecular Biology. 1078, 9-21 (2013).
  19. Påhlman, S., Hoehner, J. C., et al. Differentiation and survival influences of growth factors in human neuroblastoma. European Journal of Cancer. 31 (4), 453-458 (1995).
  20. Cheung, Y. -. T., Lau, W. K. -. W., et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 30 (1), 127-135 (2009).
  21. Agholme, L., Lindström, T., Kågedal, K., Marcusson, J., Hallbeck, M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer’s disease: JAD. 20 (4), 1069-1082 (2010).
  22. La Monica, N., Racaniello, V. R. Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. Journal of Virology. 63 (5), 2357-2360 (1989).
  23. Cordey, S., Petty, T. J., et al. Identification of Site-Specific Adaptations Conferring Increased Neural Cell Tropism during Human Enterovirus 71 Infection. PLoS Pathog. 8 (7), e1002826 (2012).
  24. Xu, L. -. J., Jiang, T., et al. Global Transcriptomic Analysis of Human Neuroblastoma Cells in Response to Enterovirus Type 71 Infection. PLoS ONE. 8 (7), e65948 (2013).
  25. Luo, M. H., Fortunato, E. A. Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. Journal of Virology. 81 (19), 10424-10436 (2007).
  26. Sun, Z., Yang, H., Shi, Y., Wei, M., Xian, J., Hu, W. Establishment of a cell model system of herpes simplex virus type II latent infection and reactivation in SH-SY5Y cells. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica. 50 (1), 98-106 (2010).
  27. Yun, S. -. I., Song, B. -. H., et al. A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS pathogens. 10 (7), e1004290 (2014).
  28. Garrity-Moses, M. E., Teng, Q., Liu, J., Tanase, D., Boulis, N. M. Neuroprotective adeno-associated virus Bcl-xL gene transfer in models of motor neuron disease. Muscle & Nerve. 32 (6), 734-744 (2005).
  29. Kalia, M., Khasa, R., Sharma, M., Nain, M., Vrati, S. Japanese Encephalitis Virus Infects Neuronal Cells through a Clathrin-Independent Endocytic Mechanism. Journal of Virology. 87 (1), 148-162 (2013).
  30. Haedicke, J., Brown, C., Naghavi, M. H. The brain-specific factor FEZ1 is a determinant of neuronal susceptibility to HIV-1 infection. Proceedings of the National Academy of Sciences. 106 (33), 14040-14045 (2009).
  31. Xu, K., Liu, X. -. N., et al. Replication-defective HSV-1 effectively targets trigeminal ganglion and inhibits viral pathopoiesis by mediating interferon gamma expression in SH-SY5Y cells. Journal of molecular neuroscience: MN. 53 (1), 78-86 (2014).
  32. Oh, J., Fraser, N. W. Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. Journal of Virology. 82 (7), 3530-3537 (2008).
  33. Stiles, K. M., Milne, R. S. B., Cohen, G. H., Eisenberg, R. J., Krummenacher, C. The herpes simplex virus receptor nectin-1 is down-regulated after trans-interaction with glycoprotein D. Virology. 373 (1), 98-111 (2008).
  34. Thomas, D. L., Lock, M., Zabolotny, J. M., Mohan, B. R., Fraser, N. W. The 2-kilobase intron of the herpes simplex virus type 1 latency-associated transcript has a half-life of approximately 24 hours in SY5Y and COS-1 cells. Journal of Virology. 76 (2), 532-540 (2002).
  35. Handler, C. G., Cohen, G. H., Eisenberg, R. J. Cross-linking of glycoprotein oligomers during herpes simplex virus type 1 entry. Journal of Virology. 70 (9), 6076-6082 (1996).
  36. Nicola, A. V., Hou, J., Major, E. O., Straus, S. E. Herpes Simplex Virus Type 1 Enters Human Epidermal Keratinocytes, but Not Neurons, via a pH-Dependent Endocytic Pathway. Journal of Virology. 79 (12), 7609-7616 (2005).
  37. Korecka, J. A., van Kesteren, R. E., et al. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PloS One. 8 (5), e63862 (2013).
  38. Presgraves, S. P., Ahmed, T., Borwege, S., Joyce, J. N. Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotoxicity Research. 5 (8), 579-598 (2004).
  39. Qiao, J., Paul, P., et al. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation. Biochemical and Biophysical Research Communications. 424 (3), 421-426 (2012).
check_url/it/53193?article_type=t

Play Video

Citazione di questo articolo
Shipley, M. M., Mangold, C. A., Szpara, M. L. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J. Vis. Exp. (108), e53193, doi:10.3791/53193 (2016).

View Video