Summary

加工机械可调和生物活性金属支架的生物医学应用

Published: December 08, 2015
doi:

Summary

Bioactive and mechanically reliable metal scaffolds have been fabricated through a method which consists of two processes, dynamic freeze casting for the fabrication of porous Ti, and coating and densification of the Ti scaffolds. The densification process is simple, effective and applicable to the fabrication of functionally graded scaffolds.

Abstract

Biometal systems have been widely used for biomedical applications, in particular, as load-bearing materials. However, major challenges are high stiffness and low bioactivity of metals. In this study, we have developed a new method towards fabricating a new type of bioactive and mechanically reliable porous metal scaffolds-densified porous Ti scaffolds. The method consists of two fabrication processes, 1) the fabrication of porous Ti scaffolds by dynamic freeze casting, and 2) coating and densification of the porous scaffolds. The dynamic freeze casting method to fabricate porous Ti scaffolds allowed the densification of porous scaffolds by minimizing the chemical contamination and structural defects. The densification process is distinctive for three reasons. First, the densification process is simple, because it requires a control of only one parameter (degree of densification). Second, it is effective, as it achieves mechanical enhancement and sustainable release of biomolecules from porous scaffolds. Third, it has broad applications, as it is also applicable to the fabrication of functionally graded porous scaffolds by spatially varied strain during densification.

Introduction

而金属生物材料已被广泛用作由于其优异的机械强度和韧性,1-3承重植入物和内固定装置,他们涉及两个关键的挑战:1)机械失配,因为金属是比生物体组织硬得多,从而导致不希望的损害到周围组织和2)低的生物活性,往往导致界面差与生物组织,往往挑起异物反应 (如炎症或血栓形成)。已经提出了促进骨向内生长的结构4-6多孔金属支架,改善骨-植入物接触,而应力屏蔽效果,因为它们降低的刚性抑制7-9此外,各种表面改性已经应用于提高金属植入物的生物活性;这些修改包括涂层将金属表面与生物活性分子例如,生长的fac器)或药物 (如万古霉素,四环素)10-12但是,存在的问题,如多孔金属支架降低机械性能,降低的硬度和快速释放的生物活性涂层的层仍然没有得到解决。13-16

特别是,钛(Ti)和Ti的合金是一体的,因为它们的优异的机械性能,化学稳定性的最流行​​biometal系统,以及良好的生物相容性。13,17-19其泡沫形的应用也引起越来越多的关注,因为在3D多孔网络促进除了骨样的机械性能的骨向内生长。20-22已作出努力通过开发新的制造技术,包括聚合海绵的复制,金属粒子,快速成型(RP)的方法的烧结来提高机械性能,并为了控制孔的各种特征空间保持器的方法例如,孔隙分数,形状,大小,分布,和连接)和材料性质例如,金属相和杂质)23-25 ​​最近,水性金属浆料的冻结铸造已经获得了相当大的注意,以产生机械增强的Ti形式具有良好对准孔结构通过利用在凝固过程中的单向冰枝晶生长;然而,所造成的金属粉末与水接触氧污染需要特别小心,以尽量减少钛支架的脆化。14,15

因此,我们开发了对制造生物活性和机械可调多孔钛支架的新方法。25支架最初有超过50%的孔隙率多孔结构。所制造的多孔支架涂覆有生物活性分子,然后进行压缩使用期间的最后的孔隙率,机械性能和药物释放行为由APPLI分别控制一个机械压力机编辑应变。致密多孔钛种植体,尽管低刚度比得上骨(3-20 GPA)2由于被覆层的一者所示低孔隙率具有良好的强度,致密多孔钛的生物活性显著改善。因为引起的致密化过程中的独特扁平孔结构。此外,涂布的生物活性分子被视为被逐渐从支架释放时,保持其功效为长时间。

在这项研究中,我们介绍了我们建立的方法来制作致密多孔钛支架的生物医学应用的潜在用途。该协议包括动态凝固的铸造​​金属浆料和多孔支架的致密化。首先,为了制造多孔钛支架具有良好的延展性的动态冷冻铸造方法被引入如图1A。钛粉末分散在液体莰;然后,通过降低温度,液相固化,从而在钛粉末网络和固体莰晶体之间的相分离。接着,将固化的Ti-莰生坯进行烧结,其中的Ti粉末缩合的连续钛支柱,和莰相完全除去,得到多孔结构。该涂层和致密化过程用所获得的多孔支架受雇于,变化的致密化和初始孔隙的程度。被覆层和它的释放行为进行观察和使用绿色荧光蛋白(GFP)包被的多孔钛具有和不致密化相比,GFP-涂覆致密的Ti定量。最后,提出并通过改变多孔支架的内层和外层部分的致密化的程度表现出功能梯度的Ti支架具有两个不同的多孔结构。

Protocol

1.制备多孔金属支架的通过混合市售的Ti粉末,莰烯,和KD-4 如表1中描述的多孔钛支架具有四个初始孔隙率(40,50,60,和70)称量材料的适当的量后制备的Ti-莰泥浆。倾浆料到500ml聚乙烯(PE)瓶和旋转瓶在55℃下30分钟在球磨机烘箱在30rpm。 倾从PE瓶浆料成圆柱形的铝(Al)的模具,其直径为60毫米和60毫米的高度。密封每个铝模具与相应的A1盖玻片并旋转在球磨机烘箱模…

Representative Results

用于生产多孔钛的支架的制造方法示于图1A。钛粉末被保持在莰均匀分散由容器的连续旋转在44℃下12小时和,而液体莰被完全固化,相对较重的Ti粉末的任何沉积物最小化。其结果是,将均匀的Ti-莰生坯使用动态冷冻浇铸方法生产,如图1B所示,在其中三维地相互连接的大莰孔隙由钛粉末相(图1C)所包围。然而,不正确的容器的转动…

Discussion

而biometal系统已被广泛地用于生物医学应用,特别是,作为承重材料,高刚度和金属的低生物活性已被视为重大的挑战。在这项研究中,我们建立了一个新的金属系统,致密多孔金属支架具有仿生机械性能以及生物活性表面与可持续释放行为的制造方法。我们的制作方法的主要优点包括:1)在前面的动态冷冻的铸造方法没有变化,我们已经开发,28 2)中的一个参数度的控制致密化-实现机…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by the Technology Innovation Program (Contract grant No. 0037915, WPM Biomedical Materials-Implant Materials) and Industrial Strategic Technology Development Program (Contract grant No. 10045329, Development of customized implant with porous structure for bone replacement), funded by the Ministry of Trade, industry & Energy (MI, Korea), and BK21 PLUS SNU Materials Division for Educating Creative Global Leaders (Contract grant No. 21A20131912052).

Materials

Titanium powder Alfa Aesar #42624 -325 mesh, 99.5% (metals basis)
Camphene SigmaAldrich #456055 95%, C10H16
KD-4 Croda ­ Hypermer, polymeric dispersant
Phosphate Buffer Solution (PBS) Welgene ML 008-01 ­
Green Fluorescent Protein (GFP) Genoss Co. >98% purity, 1mg/ml
Ball mill oven SAMHENUG ENERGY SH-BDO150 ­
Freeze dryer Ilshin Lab. PVTFD50A ­
Cold isostatic pressing (CIP) machine SONGWON SYSTEMS CIP 42260 ­
Vaccum furnace JEONG MIN INDUSTRIAL JM-HP20 ­
electical chaege machine FANUC robocut 0iB External use
Press machine CG&S AJP-200 ­
Confocal laser scanning spectroscopy (CLSM) Olympus FluoView FV1000 External use

Riferimenti

  1. Long, M., Rack, H. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 19 (18), 1621-1639 (1998).
  2. Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A. 33 (3), 477-486 (2002).
  3. Frosch, K. H., Stürmer, K. M. Metallic biomaterials in skeletal repair. Eur. J. Trauma. 32 (2), 149-159 (2006).
  4. Huiskes, R., Weinans, H., Van Rietbergen, B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res. 274, 124-134 (1992).
  5. Kanayama, M., et al. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J. Neurosurg. Spine. 93 (2), 259-265 (2000).
  6. Jung, H. -. D., Kim, H. -. E., Koh, Y. -. H. Production and evaluation of porous titanium scaffolds with 3-dimensional periodic macrochannels coated with microporous TiO2. 135, 897-902 (2012).
  7. Jones, A. C., et al. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 28 (15), 2491-2504 (2007).
  8. Li, J. P., et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials. 28 (18), 2810-2820 (2007).
  9. Ahn, M. -. K., Jo, I. -. H., Koh, Y. -. H., Kim, H. -. E. Production of highly porous titanium (Ti) scaffolds by vacuum-assisted foaming of titanium hydride (TiH2) suspension. Mater. Lett. 120 (1), 228-231 (2014).
  10. Baas, J., et al. The effect of pretreating morselized allograft bone with rhBMP-2 and/or pamidronate on the fixation of porous Ti and HA-coated implants. Biomaterials. 29 (19), 2915-2922 (2008).
  11. Peng, L., Bian, W. -. G., Liang, F. -. H., Xu, H. -. Z. Implanting hydroxyapatite-coated porous titanium with bone morphogenetic protein-2 and hyaluronic acid into distal femoral metaphysis of rabbits. Chin. J. Traumatol. (English Edition). 11 (3), 179-185 (2008).
  12. Reiner, T., Kababya, S., Gotman, I. Protein incorporation within Ti scaffold for bone ingrowth using Sol-gel SiO2 as a slow release carrier. J. Mater. Sci. – Mater. Med. 19, 583-589 (2008).
  13. Lee, J. H., Kim, H. E., Shin, K. H., Koh, Y. H. Improving the strength and biocompatibility of porous titanium scaffolds by creating elongated pores coated with a bioactive, nanoporous TiO2 layer. Mater. Lett. 64, 2526-2529 (2010).
  14. Li, J. C., Dunand, D. C. Mechanical properties of directionally freeze-cast titanium foams. Acta Mater. 59 (1), 146-158 (2011).
  15. Chino, Y., Dunand, D. C. Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56 (1), 105-113 (2008).
  16. Kim, S. W., et al. Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer. Mater. Sci. Eng. C. 33 (5), 2808-2815 (2013).
  17. Brentel, A. S., et al. Histomorphometric analysis of pure titanium implants with porous surface versus rough surface. J. Appl. Oral Sci. 14 (3), 213-218 (2006).
  18. Buser, D., et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25 (7), 889-902 (1991).
  19. Cochran, D., Schenk, R., Lussi, A., Higginbottom, F., Buser, D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J. Biomed. Mater. Res. 40 (1), 1-11 (1998).
  20. Young, D. R., Robb, R. A., Rock, M. G., Chao, E. Y. Analysis of periprosthetic tissue formation around a porous titanium endoprosthesis using CT-based spatial reconstruction. J. Comput. Assist. Tomo. 18 (3), 461-468 (1994).
  21. Spoerke, E. D., et al. A bioactive titanium foam scaffold for bone repair. Acta Biomater. 1 (5), 523-533 (2005).
  22. Jung, H. D., et al. Highly aligned porous Ti scaffold coated with bone morphogenetic protein-loaded silica/chitosan hybrid for enhanced bone regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 102 (5), 913-921 (2013).
  23. Ryan, G. E., Pandit, A. S., Apatsidis, D. P. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials. 29 (27), 3625-3635 (2008).
  24. Vasconcellos, L. M. R., et al. Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater. Res. 11 (3), 275-280 (2008).
  25. Jung, H. D., Yook, S. W., Kim, H. E., Koh, Y. H. Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Mater. Lett. 63 (17), 1545-1547 (2009).
  26. Jung, H. -. D., Jang, T. -. S., Wang, L., Kim, H. -. E., Koh, Y. -. H., Song, J. Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials. 37, 49-61 (2015).
  27. Tarng, Y. S., Ma, S. C., Chung, L. K. Determination of optimal cutting parameters in wire electrical discharge machining. Int. J. Mach. Tools Manufact. 35 (12), 1693-1701 (1995).
  28. Jung, H. -. D., et al. Dynamic Freeze Casting for the Production of Porous Titanium (Ti) Scaffolds. Mater. Sci. Eng. C. 33 (1), 59-63 (2013).
  29. Lee, J. -. H., Kim, H. -. E., Shin, K. -. H., Koh, Y. -. H. Improving the strength and biocompatibility of porous titanium scaffolds by creating elongated pores coated with a bioactive, nanoporous TiO2. Mater. Lett. 64 (22), 2526-2529 (2010).
  30. Jung, H. -. D., Yook, S. -. W., Kim, H. -. E., Koh, Y. -. H. Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Mater. Lett. 63 (17), 1545-1547 (2009).
  31. Yook, S. -. W., et al. Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomater. 8 (6), 2401-2410 (2012).
  32. Yook, S. W., Yoon, B. H., Kim, H. E., Koh, Y. H., Kim, Y. S. Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Mater. Lett. 62 (30), 4506-4508 (2008).
  33. Yook, S. W., Kim, H. E., Koh, Y. H. Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Mater. Lett. 63 (17), 1502-1504 (2009).
check_url/it/53279?article_type=t

Play Video

Citazione di questo articolo
Jung, H., Lee, H., Kim, H., Koh, Y., Song, J. Fabrication of Mechanically Tunable and Bioactive Metal Scaffolds for Biomedical Applications. J. Vis. Exp. (106), e53279, doi:10.3791/53279 (2015).

View Video