Summary

交变磁场敏感的混合明胶微凝胶药物控释

Published: February 13, 2016
doi:

Summary

我们提出了一个简便的方法来制造可生物降解的明胶释药的平台,磁热响应。这是通过由京尼平交联的球形明胶微网内掺入超顺磁性氧化铁纳米颗粒和聚(N- isopropylacrylamide- -丙烯酰胺),在结合交变磁场的应用系统来实现的。

Abstract

磁响应纳米/微工程生物材料,使一个紧密控制的,按需给药已被开发为新的类型的生物医学应用智能软设备。虽然许多磁响应药物递送系统已经证明通过概念研究的在体内临床前应用中,不是在体外证明功效,其在临床环境中的使用仍然可以通过生物 ​​相容性或生物降解性不足的限制。此外,许多现有的平台依靠自己捏造的尖端技术。我们最近通过物理截留聚(N- isopropylacrylamide- -丙烯酰胺)链作为三维明胶网络中的次要组分表现出生物降解性,基于明胶的热-反应微粒凝胶的制造。在这项研究中,我们提出了一个简便的方法来制造可生物降解的药物释放平台,使磁-Thermally触发药物释放。这是通过结合超顺磁性氧化铁纳米颗粒和热 – 反应聚合物基于明胶的胶体微凝胶内,在结合交变磁场的应用系统来实现的。

Introduction

刺激响应药物输送系统,使响应于内源或外源刺激一个紧密控制的药物递送例如,温度或pH)已经被广泛地研究作为新型药物递送智能软设备。微尺度水凝胶已被广泛地用作药物递送平台,因为它们赋予可控和持续的药物释放曲线,以及可调的化学和机械性能1-3。特别是,胶体微粒凝胶表现出许多优点,作为药物递送的载体,由于其快速响应外界刺激和合适的可注射到局部组织中以微创方式4。聚(N-异丙基丙烯酰胺)(PNIPAM)或其共聚物已经广泛地在合成热-反应微凝胶通过接枝用的可生物降解/生物相容性的聚合物,包括明胶,壳聚糖,藻酸盐酸或透明质酸PNIPAM通过5,6-,其中在其低临界溶解温度(LCST)PNIPAM的相位转变特性可以用作药物释放7的触发。我们最近证明可生物降解的,基于明胶的热-反应微粒凝胶的制造通过将聚(N- isopropylacrylamide- -丙烯酰胺)[P(NIPAM- -AAm)]链作为三维明胶网络8内的次要组分。明胶/ P(NIPAM- -AAm)微粒凝胶显示出可调谐消溶胀温度增加,这正与牛血清白蛋白(BSA)的释放有关。

在过去的几年里,一直在增加努力,开发出磁响应药物交付平台,可以触发按需时尚9,10药物的释放。为磁响应药物递送平台的合成的基本原理利用超顺磁性纳米颗粒的特性(的MNP)时,他们收到的高频交变磁场(AMF),这将触发一个温度敏感的药物释放产生热量。这适用于在该系统能深定位到组织未来的临床应用的承诺,使得非侵入性和远程控制的药物释放,并可以与热疗治疗和磁共振成像系统10-12被组合。这样的平台包括:(1)的MNP / PNIPAM混合凝胶微粒和13-15(2)宏观水凝胶支架固定结合16-18的MNP。基于PNIPAM-微凝胶平台展示了精细调谐体积相变反应,以磁热刺激。然而,它们仍然依赖于在制造和具有高含量的使用PNIPAM聚合物的复杂和精密的 ​​技术可以潜在细胞毒性,以细胞19,这可能限制了其在体内的应用。宏观支架呈现出相对相比于胶体微粒凝胶LY对外界的刺激反应慢,需要一个微创手术移植。

水包油乳化一直以生产亚毫米或微米尺寸的凝胶颗粒20的标准方法。在该乳液的水 – 油界面,微凝胶颗粒形成球状由于在机械剪切力的水滴的表面能量的最小化。此方法允许产生大量的简单制造过程中水性球形凝胶液滴的,并已成功地采用了用于制造用于药物递送应用21-23基于明胶的微粒凝胶。

这里,我们提出了一个简便的方法通过采用水包油乳化法合成用于药物递送应用magnetothermally响应基于明胶的微粒凝胶。这通过物理地结合的氧化铁的MNP和p(NIPAM- 共同实现-AAM)链作为共价由天然衍生的交联剂京尼平与高频交变磁场(AMF)的应用系统交联的组合,球面微尺度明胶网络中的次要组分。

Protocol

注意: 在图1A中示出的制造磁场响应明胶微凝胶的整个过程。 1.准备解决方案及停牌通过在2ml磷酸盐缓冲盐水中溶解20mg的京尼平的制备交联剂京尼平(1%重量/体积)溶液(1×PBS; pH 7.4)中。涡旋该溶液,并发生在50℃水浴2小时以完全溶解该溶液中。 由20毫克聚(乙二醇)的聚(丙二醇) -聚(乙二醇)溶解制备表面活性剂溶液(M W =</su…

Representative Results

当正确地进行协议,所制造的微凝胶应表现出在5微米之间微米至20(图1B 和C)的范围内的充分表征的球形形态和胶体分散直径。任一荧光灯的MNP或荧光的BSA可以用来确认是否的MNP或药物(BSA在这项研究中)的微粒凝胶(图1D)内适当包封。所制作的微凝胶可以稳定且存储在没有任何酶降解剂,包括胶原酶摄氏 4度长达4周。的p?…

Discussion

这里所描述的技术演示概念的使用纳米粒子微凝胶杂交的磁热触发药物释放证明。这是通过由京尼平交联的微尺度三维明胶网络内的物理截留的MNP和p(NIPAM- -AAm)链来实现的。磁场响应平台足以响应于远程施加的AMF,这又引发了模型药物,BSA的释放,以产生微粒凝胶内的热量。

A至嵌入两者的MNP和p(NIPAM- -AAm)策略似乎是实现从明胶微凝胶所期望的药物释?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究是由里斯家庭创新奖和美国国立卫生研究院1R01NR015674-01到MK支持。作者感谢何塞普Nayfach(Qteris公司)提供的电磁发电机系统,以及他的技术咨询。作者还感谢焕颜(LCI及物理化学跨学科计划,肯特州立大学),她的技术助理。

Materials

Gelatin Sigma-Aldrich, MO, USA G2500 Gelatin type A, porcine skin
poly(N-isopropylacrylamide-co-acrylamide)  Sigma-Aldrich, MO, USA 738727 MW=20,000, LCST=34-38 oC
Silicon oil Sigma-Aldrich, MO, USA 378372 Viscosity 350 cSt
Pluoronic L64 Sigma-Aldrich, MO, USA 435449 100 ppm poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)
genipin TimTec LLC, DE, USA ST080860 Mw = 226.23; 
Magnetic nanoparticles (MNPs) Micromod Inc, Germany 79-00-102 nanomag-D-spio, 100 nm
TR-BSA Life Technologies, NY USA A23017 Albumin from Bovine Serum (BSA), Texas Red conjugate

Riferimenti

  1. Langer, R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc. Chem. Res. 33, 94-101 (2000).
  2. Rivest, C. M., Morrison, D., Ni, B., Rubib, J., Yadav, V., Mahdavi, A., Karp, J., Khademhosseini, A. Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J Mech Mater Struct. 2, 1103-1119 (2007).
  3. Kawaguchi, H. Thermoresponsive microhydrogels: preparation, properties and applications. Polym. Int. 63, 925-932 (2014).
  4. Vinogradov, S. V. Colloidal microgels in drug delivery applications. Curr. Pharm. Des. 12, 4703-4712 (2006).
  5. Liechty, W. B., Kryscio, D. R., Slaughter, B. V., Peppas, N. A. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 1, 149-173 (2010).
  6. Kumari, A., Yadav, S. K., Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces. 75, 1-18 (2010).
  7. Shibayama, M., Tanaka, T. Volume Phase-Transition and Related Phenomena of Polymer Gels. Adv Polym Sci. 109, 1-62 (1993).
  8. Sung, B., Kim, C., Kim, M. H. Biodegradable colloidal microgels with tunable thermosensitive volume phase transitions for controllable drug delivery. J Colloid Interface Sci. 450, 26-33 (2015).
  9. Kumar, C. S., Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789-808 (2011).
  10. Mura, S., Nicolas, J., Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991-1003 (2013).
  11. Kong, S. D., et al. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta biomaterialia. 9, 5447-5452 (2013).
  12. Hayashi, K., et al. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics. 8, 834-844 (2014).
  13. Suzuki, D., Kawaguchi, H. Stimuli-sensitive core/shell template particles for immobilizing inorganic nanoparticles in the core. Colloid Polym Sci. 284, 1443-1451 (2006).
  14. Bhattacharya, S., Eckert, F., Boyko, V., Pich, A. Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small. 3, 650-657 (2007).
  15. Wong, J. E., Gaharwar, A. K., Muller-Schulte, D., Bahadur, D., Richtering, W. Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: Magnetic and thermoresponsive. J Colloid Interf Sci. 324, 47-54 (2008).
  16. Zhao, X., et al. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. U.S.A. 108, 67-72 (2011).
  17. Xu, F., et al. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS nano. 6, 6640-6649 (2012).
  18. Li, Y. H., et al. Magnetic Hydrogels and Their Potential Biomedical Applications. Adv Funct Mater. 23, 660-672 (2013).
  19. Cooperstein, M. A., Canavan, H. E. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases. 8, 19 (2013).
  20. Jorgensen, L., Moeller, E. H., van de Weert, M., Nielsen, H. M., Frokjaer, S. Preparing and evaluating delivery systems for proteins. Eur J Pharm Sci. 29, 174-182 (2006).
  21. Holland, T. A., Tabata, Y., Mikos, A. G. In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release. 91, 299-313 (2003).
  22. Liang, H. C., Chang, W. H., Lin, K. J., Sung, H. W. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. J Biomed Mater Res. Part A. 65, 271-282 (2003).
  23. Solorio, L., Zwolinski, C., Lund, A. W., Farrell, M. J., Stegemann, J. P. Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med. 4, 514-523 (2010).
  24. Regmi, R., et al. Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. J Mater Chem. 20, 6158-6163 (2010).
  25. Kim, M. H., et al. Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann Biomed Eng. 41, 598-609 (2013).
  26. Ivkov, R., et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res. 11, 7093s-7103s (2005).
  27. Huang, S., Fu, X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release. 142, 149-159 (2010).
  28. Malafaya, P. B., Silva, G. A., Reis, R. L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 59, 207-233 (2007).
  29. Shah, R., Kim, J., Agresti, J., Weitz, D., Chu, L. Fabrication of monodisperse thermosensitive microgels and gel capsules in microfluidic devices. Soft Matter. 4, 2303-2309 (2008).
  30. Hoare, T., et al. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano letters. 11, 1395-1400 (2011).

Play Video

Citazione di questo articolo
Sung, B., Shaffer, S., Sittek, M., Alboslemy, T., Kim, C., Kim, M. Alternating Magnetic Field-Responsive Hybrid Gelatin Microgels for Controlled Drug Release. J. Vis. Exp. (108), e53680, doi:10.3791/53680 (2016).

View Video