Summary

のpH依存性活性の検出<em>エシェリヒア・コリ</em>シャペロンHdeB<em>インビトロ</em>と<em>インビボ</em

Published: October 23, 2016
doi:

Summary

この研究は、酸性pH条件下で大腸菌 HdeBのシャペロン活性を特徴づけるために、生物物理学的生化学的および分子技術を説明しています。これらのメソッドは、成功し、このようなHdeAなどの他の酸保護シャペロンに適用されており、他のシャペロンとストレス条件のために働くように修正することができます。

Abstract

細菌は、しばしば、このようなpHの変化、温度、酸化還元状態、露光又は機械力などの環境の変化にさらされています。これらの条件の多くは、細胞内のタンパク質のアンフォールディングを引き起こし、生物の生存に有害な影響を与えます。無関係な、ストレス特異的分子シャペロンのグループは、これらのストレス条件の生存に不可欠な役割を果たすことが示されています。完全に折り畳まれてシャペロン非アクティブなストレスの前にしながら、これらのタンパク質は急速に展開し、特定のストレス条件下でシャペロン活性になります。一度これらの条件付きで無秩序シャペロンは異なる凝集しやすい多数のタンパク質に結合し、活性化し、その凝集を防止し、直接または間接的に非ストレス状態への復帰時にリフォールディングタンパク質を容易にします。それらの活性化とクライアントの認識のメカニズムについてのより詳細な理解を得るための第一のアプローチは、精製およびsubsequenを伴いますインビトロシャペロンアッセイ使用して、これらのタンパク質のTの特徴付け。 生体内ストレスアッセイにおけるフォローアップ独立インビトロの結果得られたことを確認することが不可欠です。

このプロトコルは、Eのシャペロン活性を特徴づけるために、in vitroおよびdi vivoの方法説明し大腸菌 HdeB、酸活性化シャペロン。光散乱測定は、インビトロで 、確立されたモデルのクライアントタンパク質、MDHの酸誘発性の凝集を防止するHdeBの能力のための便利な読み出しとして使用しました。分析超遠心分離実験は、非ストレス状態への復帰時のクライアントタンパク質の運命に光を当てるために、HdeBとそのクライアントタンパク質のLDHとの間の複合体形成を明らかにするために適用しました。クライアントタンパク質の酵素活性アッセイは、pHによって誘発されるクライアントの不活性化および再活性化にHdeBの効果をモニターするために行きました。最後に、生存研究はmonitoするために使用されましたin vivoでの HdeBのシャペロン機能の影響をrを

Introduction

微生物病原体は、酸誘発タンパク質アンフォールディング状態を経験する一般的な自然環境は、その酸性pH食品媒介病原体1に対する有効な障壁として機能する哺乳動物の胃(pH範囲1-4)、です。アミノ酸側鎖のプロトン化に起因するタンパク質のアンフォールディング及び凝集は、生物学的プロセス、損傷細胞構造に影響を与え、最終的に細胞死1,2を引き起こします。細菌のペリプラズムのpHは多孔性の外膜を通過するプロトンの自由拡散にほぼ瞬時に環境pHと平衡するので、グラム陰性細菌のペリプラズムと内側の膜タンパク質は、酸ストレス条件3の下で最も脆弱な細胞成分です。急速な酸の仲介による損傷に対する彼らのペリプラズムプロテオームを保護するために、グラム陰性菌は、酸活性化ペリプラズムシャペロンHdeAとHdeBを利用します。 HdeAは条件付きで無秩序シャペロンであります<sup> 4,5:中性pHでは、HdeAは折り畳まれ、シャペロン不活性な二量体として存在します。 pHが3以下のpHシフトの際に、HdeAのシャペロン機能は、6,7を速やかに活性化されます。 HdeAの活性化は、その単量体への解離、およびモノマー6-8の展開部分を含む深刻な構造変化を、必要とします。一旦活性化されると、HdeAは酸性条件下で展開するタンパク質に特異的に結合します。これは、効果的に低pHでのインキュベーションの間だけでなく、pHを中和時に両方の彼らの凝集を防ぐことができます。 pHを7.0に復帰する、HdeAはATP非依存的にそのクライアントタンパク質のリフォールディングを促進し、その二量体、シャペロン不活性なコンフォメーション9に戻って変換されます。同様に、相同的シャペロンHdeBもシャペロン不活性をpH7.0です。 HdeAとは異なり、HdeBのシャペロン活性は、pH4.0のHdeBが依然として大きく折り畳ま10ダイマーされる条件を、その見かけの最大値に達します。また、さらにpHがコーを下げますHdeBの不活化エス。これらの結果は、それらの広範な相同性にもかかわらず、HdeAとHdeBが彼らの保護シャペロン機能を有する広いpH範囲をカバーすることを可能にする機能的活性化のそれらのモードで異なることを示唆しています。 E.の耐酸性に関与している一つの他のシャペロン大腸菌は中立状態が復元されるまで、折り畳まれていないクライアントタンパク質を安定化させるために表示される、細胞質Hsp31です。 Hsp31の正確な作用モードは、しかし、12謎のままです。このようなサルモネラなどの他の腸内細菌がhdeABオペロンを欠いていることを考えると、他のまだ正体不明のペリプラズムのシャペロンはこれらの細菌11の耐酸性に関与していることが存在するかもしれない可能性が非常に高いです。

ここに提示プロトコルは、 インビトロおよびインビボ10 HdeBのpH依存シャペロン活性を監視することを可能にし、他のシャペロンを調査するために適用することができますHsp31など。あるいは、hdeABの発現を制御する転写因子の複雑なネットワークは、潜在的に、インビボでの応力アッセイにより調べることができます。 インビボでのタンパク質のシャペロン機能を特徴づけるために、異なる実験のセットアップを適用することができます。一つの経路は、タンパク質アンフォールディングストレス条件を適用して表現型のいずれかは、対象の遺伝子を過剰発現または遺伝子の欠失を担持する変異株を特徴付けることです。プロテオミクス研究はシャペロンが存在する場合、ストレス条件下で凝集体はもはやそのタンパク質を同定しないように実施することができる、または特定の酵素に対するシャペロンの影響は、酵素アッセイ14〜16を用いてストレス状態の間に決定することができます。本研究では、すべての主要なEの発現を制御するRpoH熱ショックシグマ因子32を欠いているrpoH欠失株でHdeBを過剰発現することを選びました大腸菌のシャペロンとその削除はSENSを増加することが知られています15のタンパク質のアンフォールディングを引き起こす環境ストレス条件にitivity。 HdeBのインビボシャペロン活性をΔrpoH株のpH感受性を抑制する能力をモニターすることによって決定しました。要するに、ここで紹介するプロトコルは、in vitroならびに in vivoでのコンテキストで酸活性化シャペロンの活性を特徴づけるための迅速かつ簡単な方法を提供します。

Protocol

ペリプラズムHdeBの1発現および精製注:HdeBはEに発現していました大腸菌細胞はプラスミドpTrc- hdeB 10、およびポリミキシン溶解時のペリプラズムから精製を保有。 E.の一晩培養物を準備します200 / mlのアンピシリン(LB アンプ)を含有する 30ミリリットルのLB中でプラスミドpTrc- hdeB 10を保有する 大腸菌…

Representative Results

HdeAとHdeBは、E相同であります酸ストレス条件10に対してペリプラズムタンパク質を保護することが知られている大腸菌タンパク質。私たちの仕事は、HdeAと同様に、HdeBはまた、分子シャペロンを活性化酸として機能することを明らかにしました。しかし、まだ潜在的に殺菌が、HdeA 6,9,10,22の最適pHよりも有意に高いpHでHdeA、HdeB機能とは対?…

Discussion

活性化およびHdeBのシャペロン機能のメカニズムを研究するために、HdeB大量に発現させ、精製しなければなりません。発現ベクター系の数は、この研究で使用した両方ともたpTrcかのpBADベクターを含む、標的タンパク質の高レベルの産生のために利用可能です。プロモーターはE.のために容易にアクセス可能ですコリ RNAポリメラーゼ、したがって、任意のEにHdeBの強い?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

私たちは、シャペロンアッセイの彼女の有益な助言のために博士クラウディアCremersに感謝します。ケン・ワンはHdeB精製における彼の技術支援のために認められています。この作品は、ドイツ研究財団(DFG)が提供するポスドク研究フェローシップでサポートされている(航空局へ)ハワード・ヒューズ医学研究所と航空局とUJJ-UDへの健康助成金RO1 GM102829の国立研究所によってサポートされていました。

Materials

NEB10-beta E. coli cells New England Biolabs C3019I
Ampicillin Gold Biotechnology A-301-3
LB Broth mix, Lennox LAB Express 3003
IPTG Gold Biotechnology I2481C50
Sodium chloride Fisher Scientific S271-10
Tris Amresco 0826-5kg
EDTA Fisher Scientific BP120-500
Polymyxin B sulfate  ICN Biomedicals Inc. 100565
0.2 UM pore sterile Syringe Filter Corning 431218
HiTrap Q HP (CV 5 ml) GE Healthcare Life Sciences 17-1153-01
Mini-Protean TGX, 15% Bio-Rad 4561046
Malate dehydrogenase (MDH) Roche 10127914001
Potassium phosphate (Monobasic) Fisher Scientific BP362-500
Potassium phosphate (Dibasic) Fisher Scientific BP363-1
F-4500 fluorescence spectrophotometer Hitachi FL25
Oxaloacetate Sigma O4126-5G
NADH Sigma  N8129-100MG
Sodium phosphate monobasic Sigma  S9390-2.5KG
Sodium phosphate dibasic Sigma  S397-500
Lactate dehydrogenase (LDH) Roche 10127230001
Beckman Proteome Lab XL-I analytical Ultracentrifuge Beckman Coulter 392764 https://www.beckmancoulter.com/wsrportal/wsrportal.portal?_nfpb=true&_windowLabel=UCM_RENDERER&_urlType=render&wlpUCM_RENDERER_path=%252Fwsr%252Fresearch-and-discovery%252Fproducts-and-services%252Fcentrifugation%252Fproteomelab-xl-a-xl-i%252Findex.htm#2/10//0/25/1/0/asc/2/392764///0/1//0/%2Fwsrportal%2Fwsr%2Fresearch-and-discovery%2Fproducts-and-services%2Fcentrifugation%2Fproteomelab-xl-a-xl-i%2Findex.htm/
Centerpiece, 12 mm, Epon Charcoal-filled Beckman Coulter 306493
AN-50 Ti Rotor, Analytical, 8-Place Beckman Coulter 363782
Wizard Plus Miniprep Kit Promega A1470 used for plasmid purification (Protocol 5.1)
L-arabinose Gold Biotechnology A-300-500
Glycine DOT Scientific Inc DSG36050-1000
Fluorescence Cell cuvette Hellma Analytics 119004F-10-40
Oligonucleotides Invitrogen
Phusion High-Fidelity DNA polymerase New England Biolabs M0530S
dNTP set Invitrogen 10297018
Hydrochloric Acid Fisher Scientific A144-212
Sodium Hydroxide Fisher Scientific BP359-500
Amicon Ultra 15 mL 3K NMWL Millipore UFC900324
Centrifuge Avanti J-26XPI Beckman Coulter 393127
Varian Cary 50 spectrophotometer Agilent Tech
Spectra/Por 1 Dialysis Membrane MWCO: 6 kDa Spectrum Laboratories 132650
Amicon Ultra Centrifugal Filter Units 30K Millipore UFC803024
SDS Fisher Scientific bp166-500
Veriti 96-Well Thermal Cycler Thermo Fisher 4375786

Riferimenti

  1. Smith, J. L. The Role of Gastric Acid in Preventing Foodborne Disease and How Bacteria Overcome Acid Conditions. J Food Protect. 66, 1292-1303 (2003).
  2. Hong, W., Wu, Y. E., Fu, X., Chang, Z. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol. 20 (7), 328-335 (2012).
  3. Koebnik, R., Locher, K. P., Van Gelder, P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 37, 239-253 (2000).
  4. Reichmann, D., Xu, Y., et al. Order out of Disorder: Working Cycle of an Intrinsically Unfolded Chaperone. Cell. 148 (5), 947-957 (2012).
  5. Bardwell, J. C. A., Jakob, U. Conditional disorder in chaperone action. Trends Biochem Sci. 37 (12), 517-525 (2012).
  6. Tapley, T. L., Korner, J. L., et al. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Proc Natl Acad Sci U S A. 106 (14), 5557-5562 (2009).
  7. Hong, W., Jiao, W., et al. Periplasmic Protein HdeA Exhibits Chaperone-like Activity Exclusively within Stomach pH Range by Transforming into Disordered Conformation. J Biol Chem. 280 (29), 27029-27034 (2005).
  8. Zhang, B. W., Brunetti, L., Brooks, C. L. Probing pH-Dependent Dissociation of HdeA Dimers. J Am Chem Soc. 133, 19393-19398 (2011).
  9. Tapley, T. L., Franzmann, T. M., Chakraborty, S., Jakob, U., Bardwell, J. C. A. Protein refolding by pH-triggered chaperone binding and release. Proc Natl Acad Sci U S A. 107 (3), 1071-1076 (2010).
  10. Dahl, J. -. U., Koldewey, P., Salmon, L., Horowitz, S., Bardwell, J. C. A., Jakob, U. HdeB Functions as an Acid-protective Chaperone in Bacteria. J Biol Chem. 290 (1), 65-75 (2015).
  11. Waterman, S. R., Small, P. L. C. Identification of sigmas-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol Microbiol. 21 (5), 925-940 (1996).
  12. Mucacic, M., Baneyx, F. Chaperone Hsp31 Contributes to Acid Resistance in Stationary-Phase Escherichia coli. Appl Environ Microbiol. 73 (3), 1014-1018 (2007).
  13. Daugherty, D. L., Rozema, D., Hanson, P. E., Gellman, S. H. Artificial Chaperone-assisted Refolding of Citrate Synthase. J Biol Chem. 273, 33961-33971 (1998).
  14. Jakob, U., Muse, W., Eser, M., Bardwell, J. C. A. Chaperone Activity with a Redox Switch. Cell. 96 (3), 341-352 (1999).
  15. Guisbert, E., Yura, T., Rhodius, V. A., Gross, C. A. Convergence of Molecular, Modeling, and Systems Approaches for an Understanding of the Escherichia coli Heat Shock Response. Microbiol Mol Biol Rev. 72 (3), 545-554 (2008).
  16. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P., Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol. 40 (2), 397-413 (2001).
  17. Schuck, P. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys J. 78 (3), 1606-1619 (2000).
  18. Patel, T. R., Winzor, D. J., Scott, D. J. Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution. Methods. 95, 55-61 (2016).
  19. Sambrook, J., Russell, D. W. Purification of Nucleic Acids by Extraction with Phenol:Chloroform. Cold Spring Harb Protoc. 2006, (2006).
  20. Foit, L., George, J. S., Zhang, B. i. n. W., Brooks, C. L., Bardwell, J. C. A. Chaperone activation by unfolding. Proc Natl Acad Sci U S A. 110, 1254-1262 (2013).
  21. Nicoll, W. S., Boshoff, A., Ludewig, M. H., Hennessy, F., Jung, M., Blatch, G. L. Approaches to the isolation and characterization of molecular chaperones. Protein Express Purif. 46, 1-15 (2006).
  22. Minami, Y., Hohfeld, J., Ohtsuka, K., Hartl, F. U. Regulation of the Heat-shock Protein 70 Reaction Cycle by the Mammalian DnaJ Homolog, Hsp40. J Biol Chem. 271 (32), 19617-19624 (1996).
  23. Quan, S., Koldewey, P. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat Struct Mol Biol. 18, 262-269 (2011).
  24. Gray, M. J., Wholey, W. Y. Polyphosphate Is a Primordial Chaperone. Mol Cell. 53 (5), 689-699 (2014).
check_url/it/54527?article_type=t

Play Video

Citazione di questo articolo
Dahl, J., Koldewey, P., Bardwell, J. C. A., Jakob, U. Detection of the pH-dependent Activity of Escherichia coli Chaperone HdeB In Vitro and In Vivo. J. Vis. Exp. (116), e54527, doi:10.3791/54527 (2016).

View Video