Summary

监测ER / SR钙释放与目标Ca<sup> 2+</sup>传感器捕捉器<sup> +</sup

Published: May 19, 2017
doi:

Summary

我们提出了使用我们的靶向基因编码钙指示剂(GECI)CatchER +的方案 ,用于使用实时荧光显微镜监测HEK293和骨骼肌C2C12细胞的内质网/肌浆网(ER / SR)中的快速钙瞬变。还讨论了原位测量和校准的协议。

Abstract

细胞外刺激诱发的细胞内钙(Ca 2+ )瞬态引发了生物体内的多种生物过程。在细胞内钙释放的中心是细胞内主要的钙储存细胞器,内质网(ER)和肌肉细胞中更专门的肌浆网(SR)。来自这些细胞器的钙的动态释放由兰诺定受体(RyR)和肌醇1,4,5-三磷酸受体(IP 3 R)介导,通过肌肉/内质网钙ATP酶(SERCA)泵进行再灌注。创建了一种称为CatchER的遗传编码钙传感器(GECI),用于监测ER / SR的钙释放速度。在这里,HEK293和C2C12细胞中改良的ER / SR靶向GECI CatchER +的转染和表达的详细方案及其在监测IP 3 R,RyR和SERCA泵介导的钙瞬变中的应用在HEK293细胞中使用荧光显微镜概述。受体激动剂或选择的抑制剂分散在室溶液中,并且强度变化被实时记录。使用这种方法,用4-氯 – 间甲酚(4-cmc)的RyR活化,用三磷酸腺苷(ATP)间接激活IP 3 R和抑制具有环磷酸腺苷酸的SERCA泵,观察到ER钙的降低酸(CPA)。我们还讨论了确定C2C12细胞中原位 K d和定量基础[Ca 2+ ]的方案。总之,与CatchER +结合使用的这些方案可以从ER中引发受体介导的钙释放,并将来应用于ER / SR钙相关病理学研究。

Introduction

细胞内钙(Ca 2+ )瞬态的时空属性激活各种生物学功能1 。这些Ca 2+信号事件通过不同的刺激细胞外触发,并由主要的Ca 2+储存细胞器和许多Ca 2+泵,通道和Ca 2+结合蛋白在细胞内控制。由于信号调制的缺陷,Ca 2+瞬变可能会显着改变,导致不同的疾病2 。由于Ca 2+信号传导系统的速度和复杂性,与内质网(ER)和肌质网(SR)在中心,需要基因编码的Ca 2+探针已被优化用于具有快速动力学的哺乳动物表达观察不同细胞的全球和局部Ca 2+变化3

ER和SR,其对应的肌肉细胞,是主要的细胞内Ca 2+储存细胞器,并充当Ca 2+水槽,有助于放大Ca 2+信号4 。 ER / SR是Ca 2+信号的组成部分,具有作为信号5的发射器和接收器的双重作用。兰诺定受体(RyR)和肌醇1,4,5-三磷酸受体(IP 3 R)是位于由Ca 2+ 6调节的ER / SR膜上的Ca 2+释放受体。其他药物直接或间接刺激这些受体的功能。 4-氯间甲酚(4-cmc)是RyR的有效激动剂,其具有比用于诱导SR Ca 2+释放的咖啡因高10倍的灵敏度,其中两者均经常用于研究RyR介导的Ca 2+释放健康和患病细胞7 。 ATP增加IP 3介导的Ca 2+通过IP 3 R 8租赁。 ATP结合嘌呤能受体P2YR,一种G蛋白偶联受体(GPCR),触发产生IP 3 ,结合IP 3 R从ER 9,10释放Ca 2+ 。肌质内质网钙ATP酶(SERCA)泵是一种P型ATP酶泵,也位于ER / SR膜上,可减少细胞溶质Ca 2+ ,并通过主动将离子注入ER / SR内腔来补充ER / SR 11 。 SERCA泵的特异性抑制剂包括来自加拿大的Thapsia garganica的thapigargin和来自曲霉和青霉的环磷酸(CPA)。 CPA对泵具有低亲和力,并可逆地阻断Ca 2+接入点12 。另一方面,毒胡萝卜素在M3螺旋中的残留物F256与纳摩尔不可逆地结合到不含Ca 2+的泵ar亲和力11 。分析和量化涉及Ca 2+刺激事件的变化已经并且仍然是一个挑战。由于ER / SR是Ca 2+信号传播过程中具有中枢功能的主要亚细胞Ca 2+含量隔室,因此大部分工作集中在了解ER / SR Ca 2+信号5

合成的Ca 2+染料的创建有助于推动Ca 2+成像的领域和实践。尽管诸如Mag-Fura-2的染料已被广泛用于测量不同细胞中的间隔Ca 2+ 但它们具有诸如染料负载不均匀,光漂白和不能针对特定细胞器的限制。绿色荧光蛋白(GFP)的发现和荧光蛋白 -基于Ca 2+的探针已经推动了Ca 2+成像领域的发展。一些现有的GECI是涉及黄色荧光蛋白(YFP),青色荧光蛋白(CFP),钙调蛋白和M13结合肽17,18的 Förster共振能量转移(FRET)对。肌钙蛋白C基GECI也可作为FRET对的CFP和柠檬酸和单一荧光团探针19,20,21 其他,如GCaMP2和R-GECO是涉及钙调素22,23的单一荧光团传感器。为了克服狭窄调节K d和与其Ca 2+结合结构域24中发现的多个Ca 2+结合位点相关的协同结合的限制,一类新的钙通过在增强型绿色荧光蛋白(EGFP) 25,26的发色团敏感位置设计β桶表面上的Ca 2+结合位点来产生细胞。这种称为CatchER的高度传播的传感器在扩散极限附近具有〜0.18mM的k d ,在700s -1附近ak。 CatchER已被用于监测不同哺乳动物细胞系(如HeLa,HEK293和C2C12 25)中受体介导的ER / SR钙释放。由于其快速动力学,CatchER用于年轻和老朋友病毒B NIH Jackson(FVB)小鼠的屈肌腱肌肉纤维(FDB)肌纤维,以揭示在FDB中经过2秒的去极化后,更多的Ca 2+保留在SR中与老鼠相比,老鼠的纤维27 。克服其在37℃的低荧光,这阻碍了其在哺乳动物的钙成像中的应用细胞,我们开发了一个名为CatchER +的改进版本的CatchER。 CatchER +在37℃下表现出增强的荧光,以更好地应用于哺乳动物细胞。在CatchER中加入了另外的突变以提高37℃ 28,29 ℃的热稳定性和荧光,以产生CatchER + 。 CatchER +与CatchER 30相比,其信噪比(SNR)提高了6倍。

在这里,介绍了使用CatchER +培养和转染HEK293和C2C12细胞的方案及其用于监测ER / SR受体介导的钙瞬变的方案。显示了在用4-cmc,CPA和ATP处理的HEK293细胞中表达的CatchER +的代表性结果。我们还提供了一种用于确定C2C12成肌细胞和qua中CatchER +的 原位 K d的方案基础[Ca 2+ ]的鉴定。

Protocol

幻灯片准备将22 mm x 40 mm玻璃显微镜放置在6 cm细胞培养皿中,每道1张。 将每个载玻片的每一面以及6厘米的盘暴露于紫外(UV)光15-20分钟,以在无菌罩中消毒。 用碟形玻璃盖上碟子,并放置在4°C直到准备使用。 2.制备介质,缓冲液,溶液和试剂在去离子水中制备1升Hank's平衡盐溶液(HBSS),并加入10mM HEPES,5mM NaHCO 3和1mM EGTA。用NaO…

Representative Results

本节将说明使用先前描述的使用优化的ER / SR靶向GECI CatchER +的方法通过不同的受体介导途径监测ER / SR Ca 2+的变化而实现的结果。 图1说明通过用200μM4-cmc刺激的RyR排空ER。 4-cmc是RyR的激动剂。通过CatchER +荧光强度的降低测量,添加药物会诱导ER钙的降低。如标示,本文概述的方案?…

Discussion

荧光探针如CatchER +的活单细胞成像是分析每个细胞响应于受体激动剂或拮抗剂的复杂ER / SR Ca 2+信号传导过程的有效技术。这种技术对于同时使用多个波长的成像也是有用的,例如Fura-2所需要的或将Catcher +和Rhod-2一起图像分别监测ER和胞质钙变化。该协议有几个关键步骤;细胞转染可以对成像的可行性有很大的影响。低转录率可能导致GECI表达不足以监测钙的反应。另一方面?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作由美国国立卫生研究院GM62999,NIH EB007268,NIH AG15820,B&B种子授予和NIH补充赠款给FR,BB奖学金,CM,CDT奖学金资助给RG。

Materials

4-Chloro-3-methylphenol (4-CmC) Sigma-Aldrich C55402
515DCXR dichroic mirror Chroma Technology Corp. NC338059
Adenosine 5′-triphosphate disodium salt hydrate Sigma-Aldrich A26209
Calcium chloride dihydrate EMD Millipore 102382
Corning tissue-culture treated culture dishes (100 mm) Sigma-Aldrich CLS430167
Corning tissue-culture treated culture dishes (60 mm) Sigma-Aldrich CLS430166
Cyclopiazonic Acid (CPA) EMD Millipore 239805
D(+)-Glucose ACROS Organics 41095-0010
Dow Corning 111 Valve Lubricant & Sealant Warner Instruments 64-0275
Dulbecco’s Modified Eagle’s Medium (DMEM) Sigma-Aldrich D7777
Ethylenebis(oxyethylenenitrilo)
tetraacetic Acid (EGTA)
ACROS Organics 409911000 
Fetal Bovine Serum (FBS) ThermoFisher 26140087
Fisherbrand Cover Glasses 22×40 mm Fisher Scientific  12-544B
Hanks’ Balanced Salts (HBSS) Sigma-Aldrich H4891
HEPES, Free Acid, Molecular Biology Grade EMD Millipore 391340
Immersion Oil without autofluorescence Leica 11513859
Ionomycin, Free Acid Fisher Scientific 50-230-5804
Leica DM6100B inverted microscope with a cooled EM-CCD camera Hamamatsu C9100-13
Lipofectamine 2000 Transfection Reagent ThermoFisher 11668019
Lipofectamine 3000 Transfection Reagent ThermoFisher L3000015
Low Profile Open Diamond Bath Imaging Chamber Warner Instruments RC-26GLP
Magnesium Chloride Hexahydrate Fisher Scientific M33-500
Opti-MEM ThermoFisher 51985034
Potassium Chloride EMD Millipore PX1405
Potassium Phosphate, Dibasic EMD Millipore PX1570
Potassium Phosphate, Monobasic EMD Millipore PX1565
Saponin Sigma-Aldrich 47036
SimplePCI Image Analysis Software Hamamatsu N/A
Sodium Bicarbonate Fisher Scientific S233-3
Sodium Chloride Fisher Scientific S271-500
Sterivex-GV 0.22 µm filter EMD Millipore SVGVB1010
Till Polychrome V Xenon lamp Till Photonics N/A
Trypsin (2.5%), no phenol red (10X) ThermoFisher 15090046

Riferimenti

  1. Berridge, M. J., Lipp, P., Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1 (1), 11-21 (2000).
  2. Berridge, M. J. Calcium signalling remodelling and disease. Biochem. Soc. Trans. 40, 297-309 (2012).
  3. Tang, S., Reddish, F., Zhuo, Y., Yang, J. J. Fast kinetics of calcium signaling and sensor. Curr. Opin. Chem. Biol. 27, 90-97 (2015).
  4. Rizzuto, R., Pozzan, T. Microdomains of intracellular Ca2+: Molecular determinants and functional consequences. Physiol. Rev. 86 (1), 369-408 (2006).
  5. Berridge, M. J. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 32 (5-6), 235-249 (2002).
  6. Clapham, D. E. Calcium Signaling. Cell. 131 (6), 1047-1058 (2007).
  7. HerrmannFrank, A., Richter, M., Sarkozi, S., Mohr, U., LehmannHorn, F. 4-chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. Biochimica Et Biophysica Acta-General Subjects. 1289 (1), 31-40 (1996).
  8. Ferris, C. D., Huganir, R. L., Bredt, D. S., Cameron, A. M., Snyder, S. H. Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. Proc. Natl. Acad. Sci. 88 (6), 2232-2235 (1991).
  9. Dubyak, G. R., el-Moatassim, C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol., Cell Physiol. 265 (3 Pt 1), C577-C606 (1993).
  10. Song, Z., Vijayaraghavan, S., Sladek, C. D. ATP increases intracellular calcium in supraoptic neurons by activation of both P2X and P2Y purinergic receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292 (1), R423-R431 (2007).
  11. Brini, M., Carafoli, E. Calcium Pumps in Health and Disease. Physiol. Rev. 89 (4), 1341-1378 (2009).
  12. Michelangeli, F., East, J. M. A diversity of SERCA Ca2+ pump inhibitors. Biochem. Soc. Trans. 39 (3), 789-797 (2011).
  13. Hofer, A. M., Landolfi, B., Debellis, L., Pozzan, T., Free Curci, S. Ca2+ dynamics measured in agonist-sensitive stores of single living intact cells: a new look at the refilling process. Embo J. 17 (7), 1986-1995 (1998).
  14. Hofer, A. M., Machen, T. E. Technique For InSitu Measurement of Calcium in Intracellular Inositol 1,4,5-Trisphosphate-Sensitive Stores Using The Fluorescent Indicator Mag-Fura-2. Proc. Natl. Acad. Sci. U. S. A. 90 (7), 2598-2602 (1993).
  15. Raju, B., Murphy, E., Levy, L. A., Hall, R. D., London, R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 256, (1989).
  16. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998).
  17. Miyawaki, A., et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 388 (6645), 882-887 (1997).
  18. Palmer, A. E., Jin, C., Reed, J. C., Tsien, R. Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc. Natl. Acad. Sci. U. S. A. 101 (50), 17404-17409 (2004).
  19. Heim, N., Griesbeck, O. Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein. J. Biol. Chem. 279 (14), 14280-14286 (2004).
  20. Mank, M., et al. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys. J. 90 (5), 1790-1796 (2006).
  21. Garaschuk, O., Griesbeck, O., Konnerth, A. Troponin C-based biosensors: A new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium. 42 (4-5), 351-361 (2007).
  22. Carlson, H. J., Campbell, R. E. Mutational Analysis of a Red Fluorescent Protein-Based Calcium Ion Indicator. Sensors. 13 (9), 11507-11521 (2013).
  23. Wang, Q., Shui, B., Kotlikoff, M. I., Sondermann, H. Structural Basis for Calcium Sensing by GCaMP2. Structure. 16 (12), 1817-1827 (2008).
  24. Koldenkova, V. P., Nagai, T. Genetically encoded Ca2+ indicators: Properties and evaluation. Biochim. Biophys. Acta-Mol. Cell Res. 1833 (7), 1787-1797 (2013).
  25. Tang, S., et al. Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc. Natl. Acad. Sci. U. S. A. 108 (39), 16265-16270 (2011).
  26. Zou, J., et al. Developing sensors for real-time measurement of high Ca2+ concentrations. Biochimica. 46 (43), 12275-12288 (2007).
  27. Wang, Z. -. M., Tang, S., Messi, M. L., Yang, J. J., Delbono, O. Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice. Pflugers Arch., EJP. 463 (4), 615-624 (2012).
  28. Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24 (1), 79-88 (2006).
  29. Siemering, K. R., Golbik, R., Sever, R., Haseloff, J. Mutations that suppress the thermosensitivity of green fluorescent protein. Current Biology. 6 (12), 1653-1663 (1996).
  30. Reddish, F. N. . Design Of Genetically-Encoded Ca2+ Probes With Rapid Kinetics for Sub-Cellular Application [dissertation]. , (2016).
  31. Seo, M. D., Enomoto, M., Ishiyama, N., Stathopulos, P. B., Ikura, M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim. Biophys. Acta-Mol. Cell Res. 1853 (9), 1980-1991 (2015).
  32. Lambert, D. G. . Calcium signaling protocols. , (1999).
  33. Stephens, D. J., Allan, V. J. Light microscopy techniques for live cell imaging. Science. 300 (5616), 82-86 (2003).
  34. Bootman, M. D., Rietdorf, K., Collins, T., Walker, S., Sanderson, M. Ca2+-sensitive fluorescent dyes and intracellular Ca2+ imaging. Cold Spring Harb. 2013 (2), 83-99 (2013).
check_url/it/55822?article_type=t

Play Video

Citazione di questo articolo
Reddish, F. N., Miller, C. L., Gorkhali, R., Yang, J. J. Monitoring ER/SR Calcium Release with the Targeted Ca2+ Sensor CatchER+. J. Vis. Exp. (123), e55822, doi:10.3791/55822 (2017).

View Video