Summary

在体内图像的Cx3cr1gfp/gfp 记者光谱域光学相干层析成像和扫描激光眼底

Published: November 11, 2017
doi:

Summary

本协议描述了如何利用眼科成像平台系统, 在小啮齿动物中利用光谱域光学相干层析成像和扫描激光眼底等高分辨率成像技术, 获取有关视网膜厚度和胶质细胞分布, 分别。

Abstract

光谱领域光学相干层析成像 (SD OCT) 和扫描激光眼底 (斯洛伐克) 广泛应用于实验眼科。在本协议中, 在Cx3cr1的启动子 (balb/c/c-Cx3cr1gfp/gfp) 下, 使用表达绿色荧光蛋白 (gfp) 的小鼠在视网膜中对胶质细胞进行了体内的图像。小胶质细胞是视网膜的常驻巨噬, 并有牵连在几个视网膜疾病1,2,3,4,5,6。该协议提供了一个详细的方法来生成视网膜 B 扫描, 与 SD OCT, 和成像的小胶质细胞分布在Cx3cr1gfp/gfp 鼠与斯洛伐克在体内, 使用眼科成像平台系统。该协议可用于几个记者鼠标线。但是, 这里提出的协议有一些限制。首先, 斯洛伐克和 SD OCT, 当用于高分辨率模式, 收集数据具有较高的轴向分辨率, 但横向分辨率较低 (3.5 µm 和6µm, 分别)。此外, 斯洛伐克的焦点和饱和度高度依赖于参数的选择和眼睛的正确对准。此外, 使用设计的人的病人在小鼠是具有挑战性的, 由于更高的总光功率的鼠标眼睛相比, 人眼;这可能导致侧向放大率不准确7, 这也取决于鼠标镜头在其他方面的放大倍数。然而, 尽管轴向扫描位置取决于横向放大率, 轴向 SD OCT 测量是准确的8

Introduction

在实验性眼科, 视网膜病理学的检查通常使用组织学技术进行评价。然而, 组织学要求动物 euthanization, 并可能导致改变的实际性质的组织。SD OCT 和斯洛伐克是常规用于临床眼科诊断目的和监测的一些视网膜疾病, 如糖尿病性黄斑水肿9, 前缺血性视神经病变10, 或视网膜色素变性11.SD OCT 和斯洛伐克是非侵入性的技术, 产生高分辨率的图像的视网膜, 这是可视化通过扩张瞳孔不进一步干预。SD OCT 提供视网膜结构和视网膜厚度的信息, 通过收集后向散射数据来创建视网膜的横断面图像, 而斯洛伐克收集荧光数据以产生视网膜的立体高对比度图像。现在, 这两种技术都越来越多地用于实验性眼科使用小鼠12,13,14,15 (甚至斑马鱼16,17), 可以提供定性和定量信息121718192021

内源性荧光如 lipofuscins 的积累或视网膜疣的形成可通过斯洛伐克作为自动荧光信号进行可视化。该功能使斯洛伐克成为诊断和监测视网膜疾病, 如年龄相关的黄斑变性或视网膜色素变性的有价值的技术22,23。在实验性眼科, 自动荧光成像 (AF) 可用于检测特定的细胞类型在记者的鼠标线。例如, 在Cx3cr124的启动子下, 杂表达 gfp 的小鼠对正常视网膜中胶质细胞的可视化以及对胶质细胞/巨噬生物的研究是有利的。视网膜疾病的动态21。小胶质细胞是视网膜的常驻巨噬生物, 在损伤的组织稳态和组织修复中起关键作用1,25,26。小胶质细胞活化在视网膜已报告视网膜损伤, 缺血, 和变性, 提示在视网膜疾病的这些单元的作用2,3,4,5,6

本议定书的目的是描述一个相对简单的方法, 视网膜成像和测量视网膜厚度使用 SD OCT, 并可视化 gfp 阳性小胶质细胞在Cx3cr1gfp/gfp 鼠标视网膜使用斯洛伐克 (海德堡 Spectralis HRA + OCT 系统)。本协议可用于各种小鼠行中健康或病变视网膜的成像和厚度测量。此外, 还可以使用斯洛伐克21对视网膜小胶质细胞数和微胶质细胞的活化进行形态学分析。小胶质细胞与中枢神经系统 (CNS) 的退行性疾病有关, 包括视网膜27,28,29。因此, 结合本协议中使用的两种方法, 可以使小胶质细胞分布与视网膜变性的相关性, 从而有助于监测疾病的严重性或治疗方法的有效性在体内

Protocol

在所有过程中, balb/c/c 的成年雄性和雌性小鼠在 “Cx3cr1” 的启动子下表达 gfp, 使用 24 。根据《关于在眼科和视力研究中使用动物的帕特声明》对小鼠进行了治疗, 所有的程序都是瑞士政府根据《联邦瑞士动物福利条例》批准的。通过皮下注射盐酸 medetomidine (0.75 毫克/千克) 和氯胺酮 (45 毫克/千克) 麻醉小鼠。通过监测呼吸速率和动物和 #39 对尾部捏的反射, 确定了适当的麻醉。…

Representative Results

使用这里提供的协议, SD OCT 扫描和斯洛伐克图像是从Cx3cr1gfp/gfp 鼠标在同一成像会话中获得的。图 3包括具有代表性的 SD OCT 单扫描, 它获得了30°或55°透镜 (图 3A) 和具有55°或102°透镜的具有代表性的斯洛伐克图像, 其中 gfp 阳性小胶质细胞是可视化的。与55°透镜相比, 在30°的 SD OCT 扫描中观察到脉络膜的高反射率?…

Discussion

本篇文章展示了一个协议为获取视网膜 B 扫描和成像的 gfp 阳性小胶质细胞分布在老鼠视网膜在同一成像会议。SD OCT 和斯洛伐克越来越多地用于视网膜疾病的动物模型, 提供信息的视网膜改变的时间10,14,17,18,21。使用此协议, Cx3cr1gfp/gfp Cx3cr1gfp/+ </em…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了瑞士国家科学基金会 (SNSF; #320030_156019) 的资助。作者获得德国海德堡工程有限公司的非金融支持。

Materials

Spectralis Imaging system (HRA+OCT) Heidelberg Engineering, Germany N/A ophthalmic imaging platform system
Heidelberg Eye Explorer Heidelberg Engineering, Germany N/A Version 1.9.13.0
78D standard ophthalmic non-contact slit lamp lens Volk Optical Inc., Ohio, USA V78C
Spectralis wide angle 55° lens Heidelberg Engineering, Germany 50897-002
ultra widefield 102° lens Heidelberg Engineering, Germany 50117-001
medetomidine hydrochloride 1 mg/mL (Domitor) Provet AG, Lyssach, Switzerland Swissmedic Nr. 50'590 – ATCvet: QN05CM91 anesthetic/analgesic
ketamine 50mg/ml (Ketalar) Parke-Davis, Zurich, Switzerland 72276388 anesthetic
tropicamide 0.5% + phenylephrine HCl 2.5% (Augentropfen mix) ISPI, Bern, Switzerland N/A pupil dilation
Omnican Insulin-50 0.5 ml G30 0.3 x 12mm B. Braun Mesungen AG, Carl-Braun-Straße, Germany 9151125
hydroxypropylmethylcellulose (Methocel 2%) OmniVision, Neuhausen, Switzerland N/A
+4 dpt rigid gas permeable contact lens Quantum I, Bausch + Lomb Inc., Rochester, NY N/A Base Curve: 7.20 to 8.40 mm
Diameter: 9.00 / 9.60 / 10.20 mm
Power: -25.00 to +25.00 Diopters
balanced salt solution (BSS) Inselspital, Bern, Switzerland N/A
silicon forceps N/A N/A
atipamezole 5 mg/mL (Antisedan) Provet AG, Lyssach, Switzerland N/A α2 adrenergic receptor antagonist
GraphPad Prism 7 GraphPad Software, Inc, San Diego, CA, USA N/A statistical analysis software

Riferimenti

  1. Madeira, M. H., Boia, R., Santos, P. F., Ambrosio, A. F., Santiago, A. R. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm. , 673090 (2015).
  2. Ng, T. F., Streilein, J. W. Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci. 42 (13), 3301-3310 (2001).
  3. Langmann, T. Microglia activation in retinal degeneration. J Leukoc Biol. 81 (6), 1345-1351 (2007).
  4. Joly, S., et al. Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol. 174 (6), 2310-2323 (2009).
  5. Arroba, A. I., Alvarez-Lindo, N., van Rooijen, N., de la Rosa, E. J. Microglia-mediated IGF-I neuroprotection in the rd10 mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 52 (12), 9124-9130 (2011).
  6. Zhang, C., Lam, T. T., Tso, M. O. Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. Exp Eye Res. 81 (6), 700-709 (2005).
  7. Geng, Y., et al. Optical properties of the mouse eye. Biomed Opt Express. 2 (4), 717-738 (2011).
  8. Lozano, D. C., Twa, M. D. Development of a rat schematic eye from in vivo biometry and the correction of lateral magnification in SD-OCT imaging. Invest Ophthalmol Vis Sci. 54 (9), 6446-6455 (2013).
  9. Vaz-Pereira, S., et al. Optical Coherence Tomography Features Of Active And Inactive Retinal Neovascularization In Proliferative Diabetic Retinopathy. Retina. 36 (6), 1132-1142 (2016).
  10. Kokona, D., Haner, N. U., Ebneter, A., Zinkernagel, M. S. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy. Exp Eye Res. , (2016).
  11. Makiyama, Y., et al. Macular cone abnormalities in retinitis pigmentosa with preserved central vision using adaptive optics scanning laser ophthalmoscopy. PLoS One. 8 (11), e79447 (2013).
  12. Paques, M., et al. High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse. Vision Res. 46 (8-9), 1336-1345 (2006).
  13. Joshi, R., et al. Spontaneously occurring fundus findings observed using confocal scanning laser ophthalmoscopy in wild type Sprague Dawley rats. Regul Toxicol Pharmacol. 77, 160-166 (2016).
  14. Muraoka, Y., et al. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One. 7 (4), e36135 (2012).
  15. Fischer, M. D., et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One. 4 (10), e7507 (2009).
  16. Bell, B. A., et al. Retinal vasculature of adult zebrafish: in vivo imaging using confocal scanning laser ophthalmoscopy. Exp Eye Res. 129, 107-118 (2014).
  17. Bailey, T. J., Davis, D. H., Vance, J. E., Hyde, D. R. Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas. Invest Ophthalmol Vis Sci. 53 (6), 3126-3138 (2012).
  18. Huber, G., et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci. 50 (12), 5888-5895 (2009).
  19. Dysli, C., Enzmann, V., Sznitman, R., Zinkernagel, M. S. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Transl Vis Sci Technol. 4 (4), 9 (2015).
  20. Sim, D. A., et al. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye. Dis Model Mech. 8 (11), 1479-1487 (2015).
  21. Bosco, A., Romero, C. O., Ambati, B. K., Vetter, M. L. In vivo dynamics of retinal microglial activation during neurodegeneration: confocal ophthalmoscopic imaging and cell morphometry in mouse glaucoma. J Vis Exp. (99), e52731 (2015).
  22. Acton, J. H., Cubbidge, R. P., King, H., Galsworthy, P., Gibson, J. M. Drusen detection in retro-mode imaging by a scanning laser ophthalmoscope. Acta Ophthalmol. 89 (5), e404-e411 (2011).
  23. Greenstein, V. C., et al. Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa. Retina. 32 (2), 349-357 (2012).
  24. Jung, S., et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 20 (11), 4106-4114 (2000).
  25. Wang, X., et al. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. J Neurosci. 36 (9), 2827-2842 (2016).
  26. Ebneter, A., Casson, R. J., Wood, J. P., Chidlow, G. Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci. 51 (12), 6448-6460 (2010).
  27. Ebneter, A., Kokona, D., Schneider, N., Zinkernagel, M. S. Microglia Activation and Recruitment of Circulating Macrophages During Ischemic Experimental Branch Retinal Vein Occlusion. Invest Ophthalmol Vis Sci. 58 (2), 944-953 (2017).
  28. Lin, Y. L., Potter-Baker, K. A. Using theoretical models from adult stroke recovery to improve use of non-invasive brain stimulation for children with congenital hemiparesis. J Neurophysiol. , (2017).
  29. Combadiere, C., et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest. 117 (10), 2920-2928 (2007).
  30. Bermudez, M. A., et al. Time course of cold cataract development in anesthetized mice. Curr Eye Res. 36 (3), 278-284 (2011).
  31. Toth, C. A., et al. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol. 115 (11), 1425-1428 (1997).
  32. Ebneter, A., Kokona, D., Jovanovic, J., Zinkernagel, M. S. Dramatic Effect of Oral CSF-1R Kinase Inhibitor on Retinal Microglia Revealed by In Vivo Scanning Laser Ophthalmoscopy. Transl Vis Sci Technol. 6 (2), 10 (2017).
  33. Gabriele, M. L., et al. Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. Invest Ophthalmol Vis Sci. 51 (12), 6519-6523 (2010).
  34. Nakao, S., et al. Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice. Invest Ophthalmol Vis Sci. 54 (8), 5288-5293 (2013).
  35. Wang, N. K., et al. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome. Dis Model Mech. 6 (5), 1113-1122 (2013).
  36. Wang, N. K., et al. Cellular origin of fundus autofluorescence in patients and mice with a defective NR2E3 gene. Br J Ophthalmol. 93 (9), 1234-1240 (2009).
  37. Thanos, S. Sick photoreceptors attract activated microglia from the ganglion cell layer: a model to study the inflammatory cascades in rats with inherited retinal dystrophy. Brain Res. 588 (1), 21-28 (1992).
  38. Hughes, E. H., et al. Generation of activated sialoadhesin-positive microglia during retinal degeneration. Invest Ophthalmol Vis Sci. 44 (5), 2229-2234 (2003).
check_url/it/55984?article_type=t

Play Video

Citazione di questo articolo
Kokona, D., Jovanovic, J., Ebneter, A., Zinkernagel, M. S. In Vivo Imaging of Cx3cr1gfp/gfp Reporter Mice with Spectral-domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy. J. Vis. Exp. (129), e55984, doi:10.3791/55984 (2017).

View Video