Summary

无源清清除小鼠卵巢血管构筑的三维重建

Published: December 10, 2017
doi:

Summary

在这里, 我们提出了被动清晰度和3D 重建方法的适应性, 可视化卵巢血管和卵泡毛细血管在完整的小鼠卵巢。

Abstract

卵巢是雌性生殖系统的主要器官, 对雌性配子的生产和内分泌系统的控制至关重要, 但复杂的结构关系和三维 (3D) 的血管结构卵巢不是很好描述。为了形象化3D 连接和结构的血管在完整的卵巢, 第一个重要的步骤是使卵巢光学清晰。为了避免组织萎缩, 我们使用了水凝胶固定的被动清晰度 (透明脂质交换丙烯酰胺-杂交刚性成像/免疫/原位杂交-相容组织水凝胶) 的协议方法清除完整的卵巢.免疫, 先进的多共聚焦显微镜, 和3D 图像重建, 然后用于可视化卵巢血管和卵泡毛细血管。采用这种方法, 我们发现卵泡毛细血管长度与卵泡壁容积之间存在显著的正相关 (P < 0.01)。

Introduction

卵泡是卵巢的基本结构和功能单位, 其发育与卵巢内的血管高度相关。血管为卵泡提供营养和荷尔蒙, 从而在卵泡的生长和成熟中发挥重要作用1

包括选择性血管标记、转基因小鼠模型和药物开发在内的各种技术的结合, 增加了我们对卵巢血管网络、血管生成和血管功能的认识。卵泡.卵巢被称为活动器官, 因为它在卵泡和排卵期间改造各种组织和血管网络。在血管的大小和结构的这种积极重塑是需要的生物功能的发展和招募卵泡。

传统的组织学和计量方法使用的卵巢切片和 immunolabeling 的血管是有限的二维 (2D) 图像2。随着三维 (3D) 重建技术的发展, 2D 图像的组织切片可以重叠, 使一个3D 的结构, 但这种方法仍然有一些局限性-切片的组织可以破坏的显微构造, 部分组织往往是缺掉的, 重要的劳动参与了从切片获得的图像进行3D 重建。全组织3D 成像与共聚焦显微镜可以克服许多这些限制, 但这些方法仅限于对胚胎卵巢血管生成的评价3。使用完整的组织清除方法, 如清晰的4可以增加可视化体积, 以解决产后和成人卵巢中的这些问题, 这些方法提供无任何结构变形的卵巢的光清除。对完整子房的3D 结构进行成像, 为图像分析软件提供了一个精确的图像数据库, 如本工作中使用的 Imaris 软件包。

整个成年期的卵巢重塑是一个动态生理系统的一部分, 这使得卵巢成为一个很好的模型来研究血管生成的调节。此外, 评估卵巢血管在女性生殖系统的病理条件, 如多囊卵巢综合征或卵巢癌的作用, 可以通过整个卵巢组织成像进行研究。被动清晰度法的发展和先进的图像分析软件的使用, 提供了详细的空间信息的关系之间的血管和卵巢结构, 如卵泡。

Protocol

所有涉及动物的程序均遵循复旦大学上海医学院动物伦理委员会的指导方针 (批准编号 20160225-013)。 1. 透明小鼠卵巢的制备 解决方案的准备 准备磷酸盐缓冲盐水 (PBS) 溶液 (1 米, pH 7.6) 与0.1% 海卫 X-100 (PBST)。制作 1 L 10x PBS 库存溶液, 混合87克氯化钠, 3.1 克 NaH2PO4 ·2H2O, 28.7 克 Na2HPO4 · 12H2o 添加 dH2</s…

Representative Results

我们将无源清晰方法应用于无源卵巢清除的快速简便方法, 同时保留了卵泡和血管结构, 并从标记的血管和卵泡中获得最高的荧光信号。卵泡血管的3D 结构是由免疫为 CD31, 一个标记为内皮细胞6。用灯丝算法追踪成年小鼠卵巢中的 CD31 染色, 并显示卵泡毛细血管与初级和次级卵泡之间的相互关系 (图 1)。 <p class="jove_content" fo:keep-toget…

Discussion

在目前的研究中, 我们提出3D 成像来评估毛细血管与个体生长卵泡之间的关系。在我们以前使用相同的协议9的工作中, 我们研究了大血管、卵泡之间的相互作用以及完整的小鼠卵巢中卵泡的位置。被动清晰的方法使我们能够研究微 vasculatures、卵泡、黄和卵泡之间的相互关系以及在不同发育阶段重建卵巢结构。

为了获得完整的组织的3D 图像数据, 清除过程是第…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究得到了中国博士后 (No. 2014T70392 至 YF)、中国国家自然科学基金 (No. 81673766 至 YF)、新教师启动基金、复旦大学 Zuoxue 基金会的赠款和发展上海市高峰学科综合医学项目 (20150407)。

Materials

Acrylamide Vetec v900845 http://www.sigmaaldrich.com/catalog/product/vetec/v900845
Alexa Flour 488 (Dilution 1:50)  Life Technologies A11039 https://www.thermofisher.com/antibody/product/Goat-anti-Chicken-IgY-H-L-Secondary-Antibody-Polyclonal/A-11039
Alexa Flour 594 (Dilution 1:50) Life Technologies A11012 https://www.thermofisher.com/antibody/product/Goat-anti-Rabbit-IgG-H-L-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-11012
Bisacrylamide Amresco 172 http://www.amresco-inc.com/BIS-ACRYLAMIDE-0172.cmsx
Black wall glass bottom dish (Willco-Dish) Ted Pella 14032 http://www.tedpella.com/section_html/706dish.htm#black_wall
Boric acid Sinopharm Chemical Reagent 10004818 http://en.reagent.com.cn/enshowproduct.jsp?id=10004818
Disodium hydrogen phosphate dodecahydrate (Na2HPO4 12H2O) Sinopharm Chemical Reagent 10020318 http://en.reagent.com.cn/enshowproduct.jsp?id=10020318
FocusClear Celexplorer FC-102 http://www.celexplorer.com/product_list.asp?MainType=107&BRDarea=1
Parafilm Bemis PM996 http://www.parafilm.com/products
Paraformaldehyde Sinopharm Chemical Reagent 80096618 http://en.reagent.com.cn/enshowproduct.jsp?id=80096618
PECAM1/CD31, platelet-endothelial cell adhesion molecule 1 (Dilution 1:10) Abcam ab28364 http://www.abcam.com/cd31-antibody-ab28364.html
Photoinitiator VA044 Wako va-044/225-02111 http://www.wako-chem.co.jp/specialty/waterazo/VA-044.htm
Sodium azide Sigma S2002 http://www.sigmaaldrich.com/catalog/product/sial/s2002?lang=en&region=US
Sodium chloride (NaCl) Sinopharm Chemical Reagent 10019318 http://en.reagent.com.cn/enshowproduct.jsp?id=10019318
Sodium dihydrogen phosphate dihydrate (NaH2PO4 2H2O) Sinopharm Chemical Reagent 20040718 http://en.reagent.com.cn/enshowproduct.jsp?id=20040718
Sodium dodecyl sulfate Sinopharm Chemical Reagent 30166428 http://en.reagent.com.cn/enshowproduct.jsp?id=30166428
Sodium hydroxide (NaOH) Sinopharm Chemical Reagent 10019718 http://en.reagent.com.cn/enshowproduct.jsp?id=10019718
Triton X-100 Sinopharm Chemical Reagent 30188928 http://en.reagent.com.cn/enshowproduct.jsp?id=30188928
Tyrosine hydroxylase (TH, Dilution 1:50) Abcam ab76442 http://www.abcam.com/tyrosine-hydroxylase-phospho-s40-antibody-ab51206.html

Riferimenti

  1. Brown, H. M., Russell, D. L. Blood and lymphatic vasculature in the ovary: development, function and disease. Hum Reprod Update. 20 (1), 29-39 (2014).
  2. McFee, R. M., et al. Inhibition of vascular endothelial growth factor receptor signal transduction blocks follicle progression but does not necessarily disrupt vascular development in perinatal rat ovaries. Biol Reprod. 81 (5), 966-977 (2009).
  3. Coveney, D., Cool, J., Oliver, T., Capel, B. Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci U S A. 105 (20), 7212-7217 (2008).
  4. Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 9 (7), 1682-1697 (2014).
  5. Schindelin, J., et al. Fiji: an Open Source platform for biological image analysis. Nat Methods. 9 (7), 676-682 (2012).
  6. Cao, G., Fehrenbach, M. L., Williams, J. T., Finklestein, J. M., Zhu, J. X., Delisser, H. M. Angiogenesis in platelet endothelial cell adhesion molecule-1-null mice. Am J Pathol. 175 (2), 903-915 (2009).
  7. Manni, L., Holmäng, A., Lundeberg, T., Aloe, L., Stener-Victorin, E. Ovarian expression of alpha (1)- and beta (2)-adrenoceptors and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries. Auton Neurosci. 118 (1 – 2), 79-87 (2005).
  8. Chourasia, T. K., Chaube, R., Singh, V., Joy, K. P. Annual and periovulatory changes in tyrosine hydroxylase activity in the ovary of the catfish Heteropneustes fossilis. Gen Comp Endocrinol. 166 (1), 111-116 (2010).
  9. Feng, Y., et al. CLARITY reveals dynamics of ovarian follicular architecture and vasculature in three-dimensions. Sci Rep. 7, 44810 (2017).
  10. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T., Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu Rev Cell Dev Biol. 32, 713-741 (2016).
  11. Liang, H., Schofield, E., Paxinos, G. Imaging Serotonergic Fibers in the Mouse Spinal Cord Using the CLARITY/CUBIC Technique. J Vis Exp. (108), e53673 (2016).
  12. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158 (4), 945-958 (2014).
  13. Phillips, J., Laude, A., Lightowlers, R., Morris, C. M., Turnbull, D. M., Lax, N. Z. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 6, 26013 (2016).
  14. Roberts, D. G., Johnsonbaugh, H. B., Spence, R. D., MacKenzie-Graham, A. Optical clearing of the mouse central nervous system using passive CLARITY. J Vis Exp. (112), (2016).
  15. Woo, J., Lee, M., Seo, J. M., Park, H. S., Cho, Y. E. Optimization of the optical transparency of rodent tissues by modified PACT-based passive clearing. Exp Mol Med. 48 (12), e274 (2016).
  16. Chung, K., et al. Structural and molecular interrogation of intact biological systems. Nature. 497 (7449), 332-337 (2013).
  17. Chung, A. S., Ferrara, N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 27, 563-584 (2011).
  18. Rodgers, R. J., Irving-Rodgers, H. F. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 82 (6), 1021-1029 (2010).
  19. Siu, M. K. Y., Cheng, C. Y. The blood-follicle barrier (BFB) in disease and in ovarian function. Adv Exp Med Biol. 763, 186-192 (2014).
  20. Dodt, H. U., et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods. 4, 331-336 (2007).
  21. Hama, H., et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 14, 1481-1488 (2011).
  22. Erturk, A., et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc. 7, 1983-1995 (2012).
  23. Kuwajima, T., et al. Clear(T): a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue. Development. 140, 1364-1368 (2013).
  24. Ke, M. T., Fujimoto, S., Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16, 1154-1161 (2013).
  25. Lai, H. M., et al. Rationalisation and validation of an acrylamide-free procedure in three-dimensional histological imaging. PLOS ONE. 11, e0158628 (2016).
  26. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157, 726-739 (2014).
  27. Tainaka, K., et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 159, 911-924 (2014).
  28. Liu, A. K. L., Lai, H. M., Chang, R. C. C., Gentleman, S. M. Free-of-acrylamide SDS-based tissue clearing (FASTClear): A novel protocol of tissue clearing for three-dimensional visualisation of human brain tissues. Neuropathol Appl Neurobiol. 43, 346-351 (2016).
  29. Xu, N., et al. Fast free-of-acrylamide clearing tissue (FACT)-an optimized new protocol for rapid, high-resolution imaging of three-dimensional brain tissue. Sci Rep. 7, 9895 (2017).
  30. Migone, F. F., Cowan, R. G., Williams, R. M., Gorse, K. J., Zipfel, W. R., Quirk, S. M. In vivo imaging reveals an essential role of vasoconstriction in rupture of the ovarian follicle at ovulation. Proc Natl Acad Sci U S A. 113, 2294-2299 (2016).
  31. Malki, S., Tharp, M. E., Bortvin, A. A whole-mount approach for accurate quantitative and spatial assessment of fetal oocyte dynamics in mice. Biol Reprod. 93 (113), (2015).
check_url/it/56141?article_type=t

Play Video

Citazione di questo articolo
Hu, W., Tamadon, A., Hsueh, A. J., Feng, Y. Three-dimensional Reconstruction of the Vascular Architecture of the Passive CLARITY-cleared Mouse Ovary. J. Vis. Exp. (130), e56141, doi:10.3791/56141 (2017).

View Video