Summary

拟南芥花器官和角果的全装清和染色

Published: April 12, 2018
doi:

Summary

在本议定书中, 我们描述了适当解剖拟南芥花和角果的技术, 一些基本的清洁技术, 以及对生殖结构的全装观察的染色程序。

Abstract

由于其强大的分子遗传学研究工具,拟南芥是植物生物学中最突出的模型物种之一, 尤其是植物繁殖生物学。然而, 植物形态学, 解剖和超微结构分析传统上涉及耗时的嵌入和切片程序, 明亮的领域, 扫描和电子显微镜。最近在共焦荧光显微术, 先进的3维计算机辅助显微分析和不断细化的分子技术, 用于微加工的全装标本, 已导致增加的需求开发高效、最小的样品处理技术。在本议定书中, 我们描述了正确解剖拟南芥花和角果的技术, 基本的清除技术, 以及对生殖结构进行整体观测的一些染色程序。

Introduction

花卉是被子植物最重要的定义器官之一。开花植物出现了一些90–130百万年前的1, 和多样化如此之快, 他们迅速的外观被描述为一个 “可恶的神秘” 由查尔斯·达尔文2。植物研究人员在花卉开发中的兴趣是多种多样的。一些研究集中于了解花的进化起源, 或特定的解剖, 结构和功能性质的发展花卉3,4,5,6.花卉形态和结构的高度变异, 以及依赖于它们的性和无性繁殖模式, 使花卉具有高度复杂的结构。这导致了不同的努力描绘花卉器官的解剖和结构特征, 使用光和电子显微技术, 可以结合基因和分子调查7。此外, 作为水果和种子的来源, 花卉对人类和动物的营养至关重要。因此, 花卉和果实发育的特征对应用研究有许多影响, 包括在不断变化的环境下为日益增长的人类人口和生态保护战略提供粮食保障8,9,10

拟南芥中的花发育始于花诱导和营养分生组织向花序 (花) 分生的转化。花分化在花序分枝11的侧面侧向展开。花器官分化从外到花的中心逐渐形成同心轮生, 最终发育成萼片、花瓣、雄蕊和心皮7。这些花器官在不同的植物种类履行独特的营养, 保护和功能 (例如, 授粉吸引力) 角色, 与性器官保持男性和女性配子体发育的发展,分别12,13. 依次, 配子体发育分别区分了一对雄性 (精子) 和雌性配子 (卵和中央细胞), 它们结合在双重受精形成下一代, 受精卵和初生胚乳, 一个终端组织支持开发胚胎14,15。果实和种子的发育支持胚胎的生长、成熟和保存, 最终它的扩散。已经进行了广泛的研究, 以描述不同植物种类的花和胚胎发育, 特别是模型物种拟南芥7,16,17

早期显微分析花卉开发是基于耗时的样品处理和观察技术, 如石蜡或树脂嵌入和切片, 结合光或电子显微镜。这些传统的显微技术通常与分子遗传学研究相结合, 如突变体的显微分析, RNA 的局部化通过原位杂交, 或蛋白质的免疫检测。最近在广域和共焦荧光显微学, 在先进的3维计算机辅助图像分析, 和不断细化的分子方法, 可用于微加工的全装标本, 已导致需要高效、最小的样品处理技术, 优先于定量分析。近年来, 对全芒动物标本的清洁技术的发展取得了长足的进展。它们通过使用水性尿素或糖基试剂 (例如、刻度、SeeDB、立方)181920或选择性地去除脂质 (使用洗涤剂 SDS), 使样品透明在稳定水凝胶中嵌入样品;脂质的去除可以通过被动扩散 (例如、修改的清晰度协议21、协议-边缘-轮辋22) 或通过电泳 (原始清晰度协议23和动作的24) 来实现。在这种快速进步的鼓舞下, 一些衍生技术也正在涌现, 用于植物。

在本方法中, 本文重点介绍了模型拟南芥, 我们描述了正确解剖花芽、花朵和幼角果的程序, 并对各种染色和观察程序的全贴装样品进行了清理, 使用经典或最新的基于 SDS 的结算方法。给出了淀粉、胼胝和染色质染色的例子。虽然这些程序可能需要进一步的改进和适应, 当与其他物种使用, 我们希望他们将为进一步研究这些简单但关键的方法, 这是许多研究项目的出发点。

Protocol

1. 花和角果固定 从植物中收获的花朵和角果在第一朵花的开头同步。注: 在这里使用的实验条件下, 植物开始开花大约21天后, 从 Murashige 和 Skoog (MS) 板块移植到土壤。种子被分层为3–4天在4°c 并且发芽或生长在 MS 板材在22°c/16 h 光和18°c/8 h 黑暗期间8到10天, 在被保留的盆栽下在营养丰富的土壤的幼苗在同样条件下 (图 1)。复制的数量取决于具体的研究目标, 但推荐?…

Representative Results

拟南芥属于 Brassicacea 家族, 具有伞房花序(图 1) 中排列的两性花的花序。每朵花有四萼片, 四个花瓣, 六雄蕊 (四长和两个短), 和一个合心皮雌蕊由两个先天融合的心皮 (图1F-H) 安排在四同心螺纹 25, 26.拟南芥有 tenuinucellate, 胚珠胚珠排列在顶叶胎的两行 (每行?…

Discussion

在整个花发育阶段, 在拟南芥的单个花序内存在许多花芽, 这为旨在表征治疗效果或发育特征的研究提供了独特的机会。同时跨越不同阶段的花卉发展。一个好参考点在不同的各自的植物之间是开头第一朵花的主要花序。植物被对待以这样方式开花是尽可能同步的 (例如, 3–4天分层在4°c 最大化同步种子发芽并且因而更加甚而开花), 并且只有在同一天打开第一朵花的植物是在处理和复?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了苏黎世大学的支持, IEF. 居里夫人 (格兰特。TransEpigen-254797 对回历), 欧洲研究理事会的高级赠款 (授予 no。MEDEA-250358 到 U.G.), 和一个研究和技术开发项目 (赠款 MecanX U.G.) SystemsX.ch, 瑞士倡议在系统生物学。

Materials

Reagents and Materials
Ethanol Scharlau ET00102500
Acetic Acid Applichem A3686,2500 100% Molecular biology grade
Glacial Acetic Acid Sigma-Aldrich 320099 Molecular Biology Grade
Methanol Scharlau ME03062500
Formaldehyde Solution Sigma-Aldrich F1635
Propionic acid Sigma-Aldrich 81910-250 ml
Chloral hydrate Sigma-Aldrich 15307
Glycerol Roth 3783.1
Gum arabic Fluka 51198
Lactic acid Fluka 69773
Phenol Sigma-Aldrich 77607-250ML We used liquid phenol (use the density to find the required volume for your solution)
Clove oil Sigma-Aldrich C8392-100ML
Xylene Roth 4436.1
Iodine Fluka 57665
Potassium iodide Merck 5043
Malachite Green Fluka 63160
Fuchsin acid Fluka 84600
Orange G Sigma 7252
Sodium Dodecyl Sulfate Sigma-Aldrich L3771 Molecular Biology Grade
Sodium hydroxide Sigma-Aldrich 71690
Sodium di-Hydrogen Phosphate Applichem A1047,1000
Sodium phosphate dibasic Sigma-Aldrich S9763-1KG
Potassium phosphate Sigma-Aldrich 04347
EDTA Applichem A2937,1000
Calcofluor Sigma F6259 Fluorescent brightener 28
Auramine Chroma 10120
DAPI Sigma D9542 toxic
Triton-X-100 Sigma T8787
Aniline blue Merck 1275
MS medium Carolina 19-57030
Nutrient-rich substrate Einheitserde ED73
Watch maker's glass No specific brand
15 ml falcon centrifuge tubes VWR 62406-200
Dumond Forceps Actimed 0208-5SPSF-PS
Forceps DUMONT BIOLOGY 0108-5
Syringe BD BD Plastipak 300013 1 ml
Preparation needle BD BD Microlance 304000
Microscope slides Thermo Scientific 10143562CE cut edges
Coverslips Thermo Scientific DV40008
Humid box A plastic box with damp paper towel and slide supports inside
Name Company Catalog Number Comments
Solutions
Fixatives
Carnoy's (Farmer's) fixative Absolute ethanol : glacial acetic acid, 3:1 (ml:ml)
Methanol/acetic acid fixative 50 % (v/v) methanol, 10 % (v/v) glacial acetic acid in deionized water
FPA50 fixative Formalin, propionic acid, 50% ethanol; 5:5:90 (ml:ml:ml)
Clearing solutions
Chloral hydrate/glycerol Chloral hydrate : glycerol : water, 8:1:2 (g:ml:ml). Can be used for all flower developmental stages and for silique development with DIC microscopy. The best fixative is the formaline based FPA50
Modified Hoyer Gum arabic 7.5 g, chloral hydrate 100 g, glycerol 5 ml , water 30 ml. Can be used for all flower developmental stages and for silique development with DIC microscopy. The best fixative is the formaline based FPA50
Herr's 4½ clearing fluid Lactic acid, chloral hydrate, phenol crystals, clove oil, xylene; 2:2:2:2:1, by weight. Can be used for all flower developmental stages (especially for stamen development) and for silique development with DIC microscopy. The best fixative is the formaline based FPA50
SDS/NaOH solution Mix-dilute the the SDS and the NaOH stock solution to 1% SDS / 0.2 N NaOH (10x dilution). For all stages of flower and silique developmental stages. The best fixative is the methano/acetic acid fixative; the other two fixatives can also be used. Can be combined with calcofluor, auramine, DAPI, and aniline blue staining solution.
SDS stock solution 10 % (w/v) sodium dodecyl sulphate. Dissolve 10 g sodium dodecyl sulphate in 80 ml deionized water and make up to 100 ml with deionized water.
NaOH stock solution 2 N NaOH solution: dissolve 4 g of NaOH in 40 ml of deionized water and make up to 100 ml with deionized water
Combined clearing and staining solutions
Herr's IKI-4½ To a standard 4½ (9 g in total) add: 100 mg iodine, 500 mg potassium iodide. This clearing solution can be used for all flower developmental stages and for silique development, either for increasing contrast or for characterizing starch dynamics. Use FPA50 for structural analysis and Carnoy's fixative for quantitative starch analysis.
Alexander staining Ethanol 95% 10ml, malachite green (1% in 95% EtOH) 1 ml, fuchsin acid (1% in ddH2O) 5ml, orange G (1% in ddH2O) 0.5ml, phenol 5g, chloral hydrate 5g, glacial acetic acid 2ml, glycerol 25ml . This clearing/staining alone or in combination with Herr's 4½ solution can be used to evaluate pollen abortion in flowers with mature and tricellular pollen grains. It's used on freshly harved non-fixed material.
Staining solutions
Calcofluor solution Calcofluor 0.007% in water (g:ml). Originally used as an optical brightner. Can be used for staining cellulose, carboxylated polysaccharides and callose in cell walls. Frequently used to stain the intine of the pollen grain. All three fixatives can be used with this solution.
Auramine solution Auramine 0.01% in water (g:ml). This lipophilic fluorscent dye can be used for staining cuticles, cutin, and exine among others. All three fixatives can be used with this solution
Calcofluor-Auramine mixture Auramine solution : Calcofluor solution, 3:1. Can be used for a combined staining by both solutions. Other proportions can be assayed maintaining a smaller proportion of calcofluor with respect to auramine.
DAPI solution DAPI 0.4 ug/ml, 0.1 M sodium phosphate buffer (pH 7), 0.1% Triton-X-100, 1 mM EDTA. This solution can be used for staining chromosome spreads during male and female meiosis, and cell nuclei of any tissue. Frequently used for studying pollen grain development. Carnoy's and methanol/ acetic acid are the best fixatives for this solution. Formaldehyde-based fixatives such as FPA50 may interfere with the staining. Excitation in the UV and maximum emission around 461 nm.
Sodium phosphate buffer (0.1 M) Proton receptor: 0.2 M Na2HPO4, proton donor: 0.2 M NaH2PO4, ratio proton donor / proton receptor: 1.364 ( for a pH 7)
Aniline blue solution 0.1% (w/v) aniline blue, 108 mM K3PO4 (pH 11), 2% glycerol. This solution can be used for staining callose and cellulose of many stages of development (e.g callose deposition in male and female terads, callose plugs in pollen tubes). Excitation in the UV and maximum emission around 455. It can also be excited at 514 nm with emission in the red for cell content staining.

Riferimenti

  1. Crane, P. R., Friis, E. M., Pedersen, K. R. The origin and early diversification of angiosperms. Nature. 374 (6517), 27-33 (1995).
  2. Friedman, W. E. The meaning of Darwin’s ‘abominable mystery’. Am J Bot. 96 (1), 5-21 (2009).
  3. Sun, G., Dilcher, D. L., Zheng, S., Zhou, Z. In search of the first flower: A Jurassic angiosperm, Archaefructus, from Northeast China. Science. 282 (5394), 1692-1695 (1998).
  4. Mulcahy, D. L. The rise of the angiosperms: a genecological factor. Science. 206 (4414), 20-23 (1979).
  5. Friedman, W. E., Moore, R. C., Purugganan, M. D. The evolution of plant development. Am J Bot. 91 (10), 1726-1741 (2004).
  6. Endress, P. K., Soltis, D., Soltis, P., Leebens-Mack, J. Angiosperm floral evolution: morphological developmental framework. Advances in botanical research Volume 44: Developmental genetics of the flower. , 1-61 (2006).
  7. Alvarez-Buylla, E. R., et al. Flower development. Arabidopsis Book. 8, 30127 (2010).
  8. Beddington, J. Food security: contributions from science to a new and greener revolution. Philos Trans R Soc Lond B Biol Sci. 365 (1537), 61-71 (2010).
  9. Godfray, H. C., et al. Food security: The challenge of feeding 9 billion people. Science. 327 (5967), 812-818 (2010).
  10. Burkle, L. A., Alarcón, R. The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot. 98 (3), 528-538 (2011).
  11. Meyerowitz, E. M., et al. A genetic and molecular model for flower development in Arabidopsis thaliana. Dev Suppl. 1, 157-167 (1991).
  12. Hafidh, S., Fíla, J., Honys, D. Male gametophyte development and function in angiosperms: a general concept. Plant Reprod. 29 (1-2), 31-51 (2016).
  13. Schmidt, A., Schmid, M. W., Grossniklaus, U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development. 142 (2), 229-241 (2015).
  14. Sprunck, S., Dresselhaus, T. Three cell fusions during double fertilization. Cell. 161 (4), 708-709 (2015).
  15. Dresselhaus, T., Sprunck, S., Wessel, G. M. Fertilization mechanisms in flowering plants. Curr Biol. 26 (3), R125-R139 (2016).
  16. Smyth, D. R., Bowman, J. L., Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell. 2 (8), 755-767 (1990).
  17. Roeder, A. H., Yanofsky, M. F. Fruit development in Arabidopsis. Arabidopsis Book. 4, e0075 (2006).
  18. Hama, H., et al. Scale, a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 14 (11), 1481-1488 (2011).
  19. Ke, M. -. T., Fujimoto, S., Imai, T. SeeDB. a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 16 (8), 1154-1161 (2013).
  20. Susaki, E. A., et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 157 (3), 726-739 (2014).
  21. Tomer, R., Ye, L., Hsueh, B., Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 9 (7), 1682-1697 (2014).
  22. Yang, B., et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 158 (4), 945-958 (2014).
  23. Chung, K., Deisseroth, K. CLARITY for mapping the nervous system. Nat Methods. 10 (6), 508-513 (2013).
  24. Lee, E., et al. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep. 6, 18631 (2016).
  25. Endress, P. K. Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. Int J Plant Sci. 153 (3, Part 2), S106-S122 (1992).
  26. Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., de Folter, S. Inside the gynoecium: at the carpel margin. Trends Plant Sci. 18 (11), 644-655 (2013).
  27. Hill, J. P., Lord, E. M. Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot. 67 (10), 2922-2936 (1989).
  28. Sessions, R. A., Zambryski, P. C. Arabidopsis gynoecium structure in the wild type and in ettin mutants. Development. 121 (5), 1519-1532 (1995).
  29. Schneitz, K., Hülskamp, M., Pruitt, R. E. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J. 7 (5), 731-749 (1995).
  30. Sundberg, E., Ferrándiz, C., Østergaard, L. Gynoecium patterning in Arabidopsis: a basic plan behind a complex structure. Annual Plant Reviews Volume 38: Fruit Development and Seed Dispersal. , 35-69 (2009).
  31. Meinke, D. W. 10 seed development in Arabidopsis thaliana. Cold Spring Harbor Monograph Archive. 27, 253-295 (1994).
  32. Weigel, D., Glazebrook, J. . Arabidopsis: a laboratory manual. , (2002).
  33. Herr, J. M. A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot. 58 (8), 785-790 (1971).
  34. Alexander, M. P. A versatile stain for pollen fungi, yeast and bacteria. Stain Technol. 55 (1), 13-18 (1980).
  35. Herr, J. M. Applications of a new clearing technique for the investigation of vascular plant morphology. J Elisha Mitchell Sci Soc Chapel Hill N C. 88 (3), 137-143 (1972).
  36. Herr, J. M., Goldman, C. A., Hauta, P. L., O’Donnell, M. A., Andrews, S. E., van der Heiden, R. Clearing techniques for the study of vascular plant tissues in whole structures and thick sections. Tested studies for laboratory teaching. Proceedings of the Fifth Workshop/Conference of the Association for Biology Laboratory Education (ABLE). 5, 63-84 (1993).
  37. Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C. E., Schroeder, J. I. Arabidopsis somatic embryogenesis receptor kinases1 and 2 are essential for tapetum development and microspore maturation. Plant Cell. 17 (12), 3350-3361 (2005).
  38. Heslop-Harrison, J., Heslop-Harrison, Y., Shivanna, K. R. The evaluation of pollen quality and a further appraisal of the fluorochromatic (FCR) test procedure. Theor Appl Genet. 67 (4), 367-379 (1984).
  39. Stone, J. L., Thomson, J. D., Dent-Acosta, S. J. Assessment of pollen viability in handpollination experiments: A review. Amer J Bot. 82 (9), 1186-1197 (1995).
  40. Dafni, A., Firmage, D. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol. 222 (1-4), 113-132 (2000).
  41. Lora, J., Testillano, P. S., Risueño, M. C., Hormaza, J. I., Herrero, M. Pollen development in Annona cherimola Mill. (Annonaceae). Implications for the evolution of aggregated pollen. BMC Plant Biol. 9, 129 (2009).
  42. Ross, K. J., Fransz, P., Jones, G. H. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res. 4 (7), 507-516 (1996).
  43. Park, S. K., Howden, R., Twell, D. The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development. 125 (19), 3789-3799 (1998).
  44. Haseloff, J. Old botanical techniques for new microscopes. BioTechniques. 34 (6), 1174-1182 (2003).
  45. Truernit, E., et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell. 20 (6), 1494-1503 (2008).
  46. Hedhly, A., et al. Starch turnover and metabolism during flower and early embryo development. Plant Physiol. 172 (4), 2388-2402 (2016).
  47. Crane, C. F., Carman, J. G. Mechanisms of apomixis in Elymus rectisetus from eastern Australia and New Zealand. Am J Bot. 74 (4), 477-496 (1987).
  48. Young, B. A., Sherwood, R. T., Bashaw, E. C. Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot. 57 (15), 1668-1672 (1979).
  49. Kurihara, D., Mizuta, Y., Sato, Y., Higashiyama, T. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development. 142, 4168-4179 (2015).
  50. Warner, C. A., et al. An optical clearing technique for plant tissues allowing deep imaging and compatible with Fluorescence Microscopy. Plant Phys. 166, 1684-1687 (2014).
  51. Hasegawa, J., Sakamoto, Y., Nakagami, S., Aida, M., Sawa, S., Matsunaga, S. Three-dimensional imaging of plant organs using a simple and rapid transparency technique. Plant Cell Physiol. 57 (3), 462-472 (2016).
  52. Musielak, T. J., Slane, D., Liebig, C., Bayer, M. A Versatile Optical Clearing Protocol for Deep Tissue Imaging of Fluorescent Proteins in Arabidopsis thaliana. PLoS ONE. 11 (8), e0161107 (2016).
check_url/it/56441?article_type=t

Play Video

Citazione di questo articolo
Hedhly, A., Vogler, H., Eichenberger, C., Grossniklaus, U. Whole-mount Clearing and Staining of Arabidopsis Flower Organs and Siliques. J. Vis. Exp. (134), e56441, doi:10.3791/56441 (2018).

View Video