Summary

1型糖尿病生物制药候选疫苗在红甜菜中的瞬态表达

Published: March 19, 2019
doi:

Summary

在这里, 我们提出了一个协议, 以产生一个口服疫苗候选1型糖尿病在食用植物。

Abstract

植物分子耕作是利用植物生产感兴趣的分子。从这个角度来看, 植物既可以作为生物反应器, 用于生产和随后纯化最终产品, 也可以用于使用可食用植物物种时直接口服异源蛋白质。在这项工作中, 我们提出了一个候选口服疫苗1型糖尿病 (T1D) 在食用植物系统中使用解构植物病毒重组 DNA 技术, 以真空渗透交付。我们的研究结果表明, 红甜菜是一个合适的宿主, 用于与 T1D 相关的人类衍生自身抗原的瞬态表达, 被认为是 T1D 疫苗的一个有希望的候选疫苗。对产生自体抗原的叶片进行了彻底的检测, 以了解其对胃消化的抵抗力、残留细菌电荷的存在以及对其的次生代谢状况, 并概述了该过程中的生产, 以便对其潜在的用途进行概述用于直接口服异源蛋白的植物。我们的分析显示, 在模拟胃消化后, 冻干候选口服疫苗几乎完全降解, 这表明在制造植物衍生的 GAD 疫苗时需要一种封装策略。

Introduction

自20世纪80年代植物分子生物学革命以来, 以植物为基础的生物制药生产系统可以被认为是基于微生物和哺乳动物细胞1 的传统系统的替代品。与传统平台相比, 工厂具有多种优势, 可扩展性、成本效益和安全性是最相关的 2。重组产物可以从转化后的植物组织中纯化, 然后在肠外或口服, 此外, 转化后的食用植物可以直接用于口服。口腔途径同时促进黏膜和全身免疫, 消除了对针头和专业医务人员的需求。此外, 口服可消除复杂的下游加工, 而下游加工通常占重组蛋白3制造总成本的80%。所有这些优势都可以转化为在生产、供应和劳动力方面的节约, 降低每剂的成本, 使全球大多数人口都能负担得起这种药物。

为植物重组蛋白的生产, 提出了几种稳定转化和瞬态表达的策略。其中, 一种高产量解构的植物病毒表达系统 (如 Mamonicon) 提供了卓越的性能, 在相对较短的时间范围内提高了重组蛋白的高产量4。报道了在作为金标准生产宿主的烟碱植物中使用植物病毒表达系统的许多瞬态表达的例子。然而, 这种示范植物并不被认为是一种可食用的物种, 因为它的叶子中积累了生物碱和其他有毒代谢物。

在这项工作中, 我们描述了两个可食用的植物系统的比较, 红色甜菜 (贝塔寻常的 Cv红磨坊) 和菠菜 (菠菜就是cv 工业), 表达了两种候选形式的 65 kda 谷氨酸异形脱羧酶 (GAD65), 由基于植物病毒的载体5进行。GAD65 是一种与1型糖尿病 (T1D) 相关的主要自身抗原, 目前正在人体临床试验中进行研究, 以通过诱导耐受性6来预防或延缓 T1D。在植物中生产 gad65 的过程中, 以烟叶5%67典型植物种类进行了广泛的研究。在这里, 我们描述了使用食用植物物种生产的分子组织, 可用于直接口服。从技术角度出发, 通过对重组蛋白表达水平、植物残留微生物电荷等不同参数的评价, 研究并选择了 GAD65 生产的植物农业渗透系统和食用植物平台。用于口服的组织, GAD65 对胃消化的抵抗力, 以及转化后的植物与野生类型的生物等效性。

Protocol

1. 红甜菜和菠菜栽培 生长红甜菜(b. vulgaris cv红磨坊) 和菠菜 (s.深恶痛绝 cv industria) 植物在生长室中, 分别使用150μe 的光强, 65% 相对湿度, 在231°c 下12小时光/暗周期。 种子萌发后, 每周用市售肥料的 1 gl 溶液 (材料表) 给植物施肥两次。对于农业渗透使用5周龄菠菜和6周龄的红甜菜植物。 2. 解构植物病毒技术的瞬态表达 植物?…

Representative Results

本文介绍了在食用植物组织中开发口服疫苗的工作流程。这项工作的重点是在可食用寄主植物物种中表达目标蛋白和对潜在口服疫苗的定性。 第一步是评估基于植物病毒的表达技术是否适合在食用植物系统中产生重组蛋白。为此, 我们首先使用 eGFP 作为模型蛋白, 并将其表达为两个可食用的叶植物系统: 红甜菜和菠菜。植物通?…

Discussion

在这项研究中, 我们对自身免疫性糖尿病候选口服疫苗的设计进行了初步分析。本实验的目标蛋白是人类 65 kDa 谷氨酸脱羧酶的突变形式, 其生产和功能易于检测和测量 12.它在不同食用植物组织中的表达是由载体5介导的, 在很短的时间内介导高水平的重组蛋白产生。根据红甜菜和菠菜叶片中 eGFP 表达的方法, 通过人工农业浸润, 选择了最佳候选植物食用寄主。由?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了维罗纳大学在2014年呼吁框架内资助的 “利用植物生产自身免疫性糖尿病食用疫苗” (项目 ID:891854) 联合项目的支持。

Materials

0.2-μm Minisart RC4 membrane filters Sartorius-Stedim 17764
2–mercaptoethanol Sigma M3148 Toxic; 4 % to make loading buffer with glycerol, SDS and Tris-HCl
4-Morpholineethanesulfonic acid (MES) Sigma M8250 pH 5.5
96-well plate Sarstedt 833924
Acetic acid Sigma 27221 Corrosive
Acetonitrile LC-MS grade Sigma 34967
Acetosyringone Sigma D134406 Toxic – 0.1 M stock in DMSO
Agar Bacteriological Grade Applichem A0949 15 g/L to make LB medium (pH 7.5 with NaOH) with Yeast extract, NaCl and Tryptone
Ammonium formate Sigma 70221
Anti-eGFP antibody ABCam ab290
Anti-GAD 65/67 antibody Sigma G5163
Anti-LHCB2 antibody Agrisera AS01 003
Brilliant Blue R-250 Sigma B7920
C18 Column Grace    – Alltima HP C18 (150 mm x 2.1 mm; 3 μm) Column
C18 Guard Column Grace    – Alltima HP C18 (7.5 mm x 2.1 mm; 5 μm) Guard  Column
CalMag Grower Peter Excel 15-5-15 Fertilizer
Carbenicillin disodium Duchefa Biochemie C0109 Toxic
Chemiluminescence imaging system BioRad 1708370 ChemiDoc Touch Imaging System
Chloroform Sigma C2432
Detergent Sigma P5927 Polysorbate 20
Fluorescence reader Perkin-Elmer  1420-011 VICTOR Multilabel Counter
Formic acid LC-MS grade Sigma 94318
Glycerol Sigma G5516 15 % to make loading buffer with Tris-HCl, SDS and 2–mercaptoethanol
GoTaq G2 polymerase Promega M7841
HCl Sigma H1758 Corrosive
HILIC Column Grace    – Ascentis Express HILIC (150 mm x 2.1 mm; particles size 2.7 μm) Column
HILIC Guard Column Grace    – Vision HT HILIC (7.5 mm x 2.1 mm; 3 μm) Guard  Column
Horseradish peroxidase (HRP)-conjugate anti-rabbit antibody Sigma A6154 Do not freeze/thaw too many times
HPLC Autosampler Beckman Coulter    – System Gold 508 Autosampler
HPLC System Beckman Coulter    – System Gold 128 Solvent Module HPLC
Isopropanol Sigma 24137 Flamable
Kanamycin sulfate Sigma K4000 Toxic
KCl Sigma P9541 2 g/L with NaCl , Na2HPO4 and KH2PO4 to make PBS
KH2PO4 Sigma P9791 2.4 g/L with NaCl , Na2HPO4 and KCl to make PBS
Loading Buffer
Luminol solution Ge Healthcare RPN2232 Prepare the solution using the ECL Prime Western Blotting System commercial kit
Lyophilizator 5Pascal LIO5P0000DGT
Mass Spectometer Bruker Daltonics   – Bruker Esquire 6000; the mass spectrometer was equipped with an ESI source and the analyzer was an ion trap
Methanol Sigma 32213
MgSO4 Sigma M7506
Milk-blocking solution Ristora    – 3 % in PBS
Na2HPO4 Sigma S7907 Use with NaH2PO4 to make Sodium Phospate buffer
NaCl Sigma S3014 80 g/L with KCl, Na2HPO4 and KH2PO4 to make PBS; 10 g/L to make LB medium (pH 7.5 with NaOH) with Yeast extract, Tryptone and Agar Bacteriological Grade
NaH2PO4 Sigma S8282  Use with Na2HPO4 to make Sodium Phospate buffer; 14.4 g/L to make PBS
NaOH Sigma S8045
Nitrocellulase membrane Ge Healthcare 10600002
Pepsin from porcine gastric mucosa Sigma P7000
Peroxidase substrate ECL GE Healthcare RPN2235 Light sensitive material
Pump Vacuum Press VWR 111400000098
Reagent A Sigma B9643 Use 50 parts of this reagent with 1 part of reagent B to prepare BCA working solution
Reagent B Sigma B9643 Use 1 part of this reagent with 50 parts of reagent A to prepare BCA working solution
Rifampicin Duchefa Biochemie R0146 Toxic – 25 mg/mL stock in DMSO
SDS (Sodium dodecyl sulphate) Sigma L3771 Flamable, toxic, corrosive-10 % stock; 3 % to make loading buffer with Tris-HCl, Glycerol and 2–mercaptoethanol
Sodium metabisulphite Sigma 7681-57-4
Sonicator system Soltec 090.003.0003 Sonica® 2200 MH; frequency 40 khz
Syringe Terumo    –
Transparent fixed 300-µL insert glass tubes Thermo Scientific 11573680
Trizma Base Sigma T1503 Adjust pH with 1N HCl to make Tris-HCl buffer, use 1,5M Tris-HCl (pH 6.8) to make loading buffer with SDS, Glycerol and 2–mercaptoethanol
Tryptone Formedium TRP03 10 g/L to make LB medium (pH 7.5 with NaOH) with Yeast extract, NaCl and Agar Bacteriological Grade
Vacuum concentrator Heto 3878 F1-3 Speed-vac System
Water LC-MS grade Sigma 39253
Yeast extract Sigma Y1333 5 g/L to make LB medium (pH 7.5 with NaOH) with Tryptone, NaCl and Agar Bacteriological Grade

Riferimenti

  1. Merlin, M., Pezzotti, M., Avesani, L. Edible plants for oral delivery of biopharmaceuticals. British Journal of Clinical Pharmacology. 83 (1), 71-81 (2017).
  2. Merlin, M., Gecchele, E., Capaldi, S., Pezzotti, M., Avesani, L. Comparative evaluation of recombinant protein production in different biofactories: The green perspective. BioMed Research International. , (2014).
  3. Menkhaus, T. J., Bai, Y., Zhang, C., Nikolov, Z. L., Glatz, C. E. Considerations for the recovery of recombinant proteins from plants. Biotechnology Progress. 20 (4), 1001-1014 (2004).
  4. Avesani, L., Bortesi, L., Santi, L., Falorni, A., Pezzotti, M. Plant-made pharmaceuticals for the prevention and treatment of autoimmune diseases: Where are we?. Expert Review of Vaccines. 9 (8), 957 (2010).
  5. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., Gleba, Y. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology. 23, (2005).
  6. Ludvigsson, J. Update on treatment of type 1 diabetes in childhood. Current Pediatric Reviews. 1 (2), 118-127 (2013).
  7. Merlin, M., et al. Enhanced GAD65 production in plants using the MagnICON transient expression system: Optimization of upstream production and downstream processing. Biotechnology Journal. 11 (4), 542-553 (2016).
  8. Gecchele, E., Merlin, M., Brozzetti, A., Falorni, A., Pezzotti, M., Avesani, L. A Comparative Analysis of Recombinant Protein Expression in Different Biofactories: Bacteria, Insect Cells and Plant Systems. Journal of Visualized Experiments. 23 (97), (2015).
  9. Dal Santo, S., et al. The terroir concept interpreted through grape berry metabolomics and transcriptomics. Journal of Visualized Experiments. 5 (116), (2016).
  10. Chen, Q., et al. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Advanced Techniques in Biology and Medicine. 1 (1), (2013).
  11. Bertini, E., et al. Design of a type-1 diabetes vaccine candidate using edible plants expressing a major autoantigen. Frontiers in Plant Science. 9, (2018).
  12. Avesani, L., et al. Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Research. 12 (2), 203-212 (2003).
  13. Sepúlveda-Jiménez, G., Rueda-Benítez, P., Porta, H., Rocha-Sosa, M. A red beet (Beta vulgaris) UDP-glucosyltransferase gene induced by wounding, bacterial infiltration and oxidative stress. Journal of Experimental Botany. 56, (2005).
  14. Renukuntla, J., Vadlapudi, A. D., Patel, A., Boddu, S. H. S., Mitra, A. Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics. 447, 75-93 (2013).
  15. . Encapsulation importance in pharmaceutical area, how it is done and issues about herbal extraction Available from: https://www.researchgate.net/publication/271702091_Encapsulation_importance_in_pharmaceutical_area_how_it_is_done_and_issues_about_herbal_extraction (2015)
  16. Kamei, N., et al. Complexation hydrogels for intestinal delivery of interferon beta and calcitonin. Journal of Controlled Release. 134, 98-102 (2009).
  17. Tuesca, A., et al. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy. Journal of Pharmaceutical Sciences. 97, 2607-2618 (2008).
  18. Twyman, R. M., Schillberg, S., Fischer, R. Optimizing the yield of recombinant pharmaceutical proteins in plants. Current Pharmaceutical Design. 19, 5486-5494 (2013).
  19. Dhama, K., et al. Plant-based oral vaccines for human and animal pathogens – a new era of prophylaxis: current and future perspectives. Journal of Experimental Biology and Agricultural Sciences. 447, 75-93 (2013).
  20. Hefferon, K. Reconceptualizing cancer immunotherapy based on plant production systems. Future science. O3, (2017).

Play Video

Citazione di questo articolo
Santoni, M., Bertini, E., Zampieri, R., Cuccurullo, A., Commisso, M., Gecchele, E., Avesani, L. Transient Expression in Red Beet of a Biopharmaceutical Candidate Vaccine for Type-1 Diabetes. J. Vis. Exp. (145), e59298, doi:10.3791/59298 (2019).

View Video