Summary

使用共同分泌的Luciferase代理物测量相对胰岛素分泌

Published: June 25, 2019
doi:

Summary

该协议描述了如何使用胰岛素相关的高辛比酶作为β细胞胰岛素分泌的代理,在中等通量下执行快速低成本荧光素酶测定。大多数发光板读取器和多通道移液器都可以进行测定。

Abstract

对分泌胰岛素样品后收集进行基于抗体的检测通常需要几个小时到一天的测定时间,并且可能非常昂贵,具体取决于特定的测定。分泌的荧光素酶测定可加快结果,大大降低每个样品的测定成本。在这里,我们提出了一种相对使用不足的方法,通过使用高西亚荧光素酶基因插入C肽中,测量胰腺β细胞的胰岛素分泌活性。在蛋白酶处理蛋白酶胰岛素过程中,将C-肽切除释放胰岛素分泌囊泡内的荧光素酶,与胰岛素共同分泌。由于荧光素酶测定的速度,在样品收集后几分钟内即可得到结果。测定的一个限制是,它是胰岛素分泌的相对测量,而不是绝对定量。但是,此协议经济、可扩展,可以使用大多数标准发光板读取器执行。模拟和数字多通道移液器有助于多个步骤的测定。可以同时测试许多不同的实验变异。一旦确定了一组聚焦条件,应直接使用具有标准曲线的基于抗体的测定法测量胰岛素浓度,以确认荧光素酶测定结果。

Introduction

这里介绍的方法允许从转基因β细胞系的胰岛素分泌快速和负担得起的96孔板格式测定。该协议的关键是胰岛素的改良版本,将自然分泌的高斯卢西酶(GLuc,#18 kDa)插入C肽(见图1),以产生胰岛素高西亚(InsGLuc)1,2。其他较大的蛋白质,如GFP(+25 kDa),已成功插入胰岛素的C-肽中,并表现出从蛋白酶-GFP到胰岛素和GFP-C-肽3、4的预期转化后处理。对于该协议中的测定,GLuc已经针对哺乳动物的表达进行了柯顿优化,并引入了两个突变来增强发光动力学5,6。治疗条件的多种组合和复制可以很容易地以96孔板格式进行测试,并在实验后立即获得分泌结果。

如前所述,如前所述,一个主要优势是这种基于荧光酶的分泌测量( $2/油井) 和同质时间解荧光 (HTRF) 或其他 Fürster 共振能量转移 (FRET) 为基础的抗体 (> $1/well) 测定。与通过参照标准曲线测量胰岛素浓度的基于抗体的测定相比,InsGLuc 测定测量分泌活性,作为对板上控制井的相对比较。因此,每个实验都需要包含适当的控件。这种区别是一种权衡,允许快速和廉价的测量。然而,InsGLuc分泌已被证明与ELISA1,2测量的胰岛素分泌高度相关。该技术已扩展至高通量筛选1、2 、7,并确定了胰岛素分泌的新型调制器,包括电压门状钾通道抑制剂7以及天然产物抑制剂β细胞功能,色霉素A28。InsGLuc 的使用最适合那些计划持续测试许多不同的治疗条件以测试其对胰岛素分泌的影响的研究人员。在后续实验中,有必要在亲子细胞系中重复关键发现,在小鼠或人类胰岛中以最佳方式重复关键发现,并使用基于抗体的测定测量胰岛素分泌。

Protocol

1. 试剂、介质和缓冲液的制备(表1) 用以下添加剂制备500 mL高葡萄糖(4.5克/升)Dulbeco改性鹰培养基(DMEM)的完整介质:15%胎儿牛血清(FBS)、100单位/mL青霉素、100微克/mL链霉素、292微克/mL L-谷氨酰胺和50μMβ-麦卡托托乙醇。注:本例中稳定的细胞系在G418抗生素的250μg/mL中保持。 通过制造含有 5 mM KCl、120 mM NaCl、15 mM HEPES (pH 7.4)、24 mM NaHCO 3、1mM MgCl2、2 mM CaCl2和 1 mg/mL …

Representative Results

为了测量在控制条件下的测定性能,可以完成一个简单的葡萄糖剂量反应曲线或使用二氧化二氮范式的刺激。在前者的情况下,在无葡萄糖条件下预孵化细胞1小时,然后以葡萄糖浓度增加治疗1小时,在5 mM及以下的分泌活性应极小,而观察到8以上增加的分泌mM 葡萄糖 (图 2)35 mM KCl 的刺激也可用作刺激分泌的阳性控制。在刺激期间纳入分泌调节药物应给予分?…

Discussion

在这里,我们提出一种方法,快速评估来自MIN6+细胞的葡萄糖刺激胰岛素分泌反应。为了在测定中获得最佳反应,重要的是将MIN6细胞播种在适当的密度,并允许它们成为85-95%的汇合物。这改善β细胞对葡萄糖的反应,因为改善的细胞-细胞接触和同步,这发生在主小岛17,18,19,20,21以及MIN6</sup…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢科布实验室的所有现任和前任成员所做的宝贵工作和讨论,感谢迪奥内·沃提供行政援助。Michael Kalwat 得到青少年糖尿病研究基金会 SRA-2019-702-Q-R 的支持。这项工作是通过NIH R37 DK34128和韦尔奇基金会授予I1243梅兰妮·科布。这项工作的早期部分也得到了NIH F32 DK100113对迈克尔·卡尔瓦特的支持。

Materials

Cell culture materials
rIns-GLuc stable MIN6 cells Parental MIN6 cell line stably expressing pcDNA3.1+rInsp-Ins-eGLuc and maintained in 250 ug/ml G418
DMEM Sigma D6429 4.5 g/L glucose media
fetal bovine serum, heat-inactivated Sigma F4135
Penicillin/Streptomycin Thermo-Fisher Scientific SV30010
beta-mercaptoethanol Thermo-Fisher Scientific BP 176-100
glutamine Thermo-Fisher Scientific BP379-100
Trypsin-EDTA Sigma T3924-500
G418 Gold Biotechnology G418-10 Stock solution 250 mg/mL in water. Freeze aliquots at -20C.
T75 tissue culture flasks Fisher Scientific 07-202-000
96 well tissue culture plates Celltreat 229196
Reagent reservoirs (50 mL) Corning 4870
Name Company Catalog Number Comments
Secretion assay reagents
BSA (RIA grade) Thermo-Fisher Scientific 50-146-952
D-(+)-Glucose Sigma G8270-1KG
KCl Thermo-Fisher Scientific P217-500
NaCl Thermo-Fisher Scientific S271-3
Hepes, pH 7.4 Thermo-Fisher Scientific 50-213-365
NaHCO3 Thermo-Fisher Scientific 15568414
MgCl2 Thermo-Fisher Scientific M9272-500G
CaCl2 Sigma C-7902
Name Company Catalog Number Comments
Optional drugs for stimulation experiments
Diazoxide Sigma D9035 Stock solution: 50 mM in 0.1N NaOH. Add equal amount of 0.1N HCl to any buffer where diazoxide is added.
epinephrine (bitartrate salt) Sigma E4375 Stock solution: 5 mM in water
PMA (phorbol 12-myristate) Sigma P1585 Stock solution: 100 µM in DMSO
Name Company Catalog Number Comments
Guassia assay materials
Disodium phosphate (Na2HPO4) Thermo-Fisher Scientific S374-500
Glycerol Thermo-Fisher Scientific G334
Sodium Bromide Thermo-Fisher Scientific AC44680-1000
EDTA Thermo-Fisher Scientific AC44608-5000 Stock solution: 0.5 M pH 8
Tris base RPI T60040-1000.0 Stock solution: 1 M pH 8
Ascorbic Acid Fisher Scientific AAA1775922 US Patent US7718389 suggested ascorbate can increase coelenterazine stability.
Na2SO3 Sigma S0505-250G US Patent US8367357 suggested sulfite may decrease background due to BSA
Coelenterazine (native) Nanolight / Prolume 3035MG Stock solution: 1 mg/ml in acidified MeOH (2.36 mM)
OptiPlate-96, White Opaque 96-well Microplate Perkin Elmer 6005290 Any opaque white 96 well plate should be sufficient. Clear bottom plates will also work, however some signal will be lost.
Name Company Catalog Number Comments
Equipment
Synergy H1 Hybrid plate reader or equivalent BioTek 8041000 A plate reader with luminescence detection and 96-well plate capabilities is required.
8-channel VOYAGER Pipette (50-1250 µL) Integra 4724 An automated multichannel pipette is extremely useful for rapid addition of luciferase reagents and plating cells in 96 well format
8-channel 200 µL pipette Transferpette S 20-200 µL 2703710

Riferimenti

  1. Kalwat, M. A., et al. Insulin promoter-driven Gaussia luciferase-based insulin secretion biosensor assay for discovery of beta-cell glucose-sensing pathways. ACS Sensors. 1 (10), 1208-1212 (2016).
  2. Burns, S. M., et al. High-throughput luminescent reporter of insulin secretion for discovering regulators of pancreatic Beta-cell function. Cell Metabolism. 21 (1), 126-137 (2015).
  3. Rajan, S., et al. In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. American Journal of Physiology – Endocrinology and Metabolism. 298 (3), E403-E410 (2010).
  4. Watkins, S., et al. Imaging Secretory Vesicles by Fluorescent Protein Insertion in Propeptide Rather Than Mature Secreted Peptide. Traffic. 3 (7), 461-471 (2002).
  5. Welsh, J. P., Patel, K. G., Manthiram, K., Swartz, J. R. Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence. Biochemical Biophysical Research Communications. 389 (4), 563-568 (2009).
  6. Tannous, B. A., Kim, D. E., Fernandez, J. L., Weissleder, R., Breakefield, X. O. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Molecular Therarpy. 11 (3), 435-443 (2005).
  7. Burns, S. M., Wagner, B. K., Vetere, A. Compounds and methods for regulating insulin secretion. World patent. , (2018).
  8. Kalwat, M. A., et al. Chromomycin A2 potently inhibits glucose-stimulated insulin secretion from pancreatic beta cells. Journal of General Physiology. , (2018).
  9. Luft, C., et al. Application of Gaussia luciferase in bicistronic and non-conventional secretion reporter constructs. BMC Biochemistry. 15 (1), 14 (2014).
  10. Ohmiya, Y., Wu, C. Stabilizing composition and stabilizing method of coelenterazine solution for high-throughput measurement of luciferase activity. U.S. Patent. , (2010).
  11. Tannous, B. A. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nature Protocols. 4 (4), 582-591 (2009).
  12. Wurdinger, T., et al. A secreted luciferase for ex vivo monitoring of in vivo processes. Nature Methods. 5 (2), 171-173 (2008).
  13. Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 49 (11), 1751-1760 (2000).
  14. Mourad, N. I., Nenquin, M., Henquin, J. C. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of beta-cell microfilaments and distinct from metabolic amplification. Molecular & Cellular Endocrinology. 367 (1-2), 11-20 (2013).
  15. Straub, S. G., Sharp, G. W. Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. American Journal of Physiology – Cell Physiology. 302 (12), C1687-C1698 (2012).
  16. Cheng, K., et al. High passage MIN6 cells have impaired insulin secretion with impaired glucose and lipid oxidation. PLoS One. 7 (7), e40868 (2012).
  17. Head, W. S., et al. Connexin-36 Gap Junctions Regulate In Vivo First- and Second-Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious. Diabetes. 61 (7), 1700-1707 (2012).
  18. Benninger, R. K. P., Head, W. S., Zhang, M., Satin, L. S., Piston, D. W. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. The Journal of Physiology. 589 (22), 5453-5466 (2011).
  19. Konstantinova, I., et al. EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell. 129 (2), 359-370 (2007).
  20. Jaques, F., et al. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology. 149 (5), 2494-2505 (2008).
  21. Calabrese, A., et al. Connexin 36 Controls Synchronization of Ca2+ Oscillations and Insulin Secretion in MIN6 Cells. Diabetes. 52 (2), 417-424 (2003).
  22. Bielefeld-Sevigny, M. AlphaLISA immunoassay platform- the "no-wash" high-throughput alternative to ELISA. Assay and Drug Development Technologies. 7 (1), 90-92 (2009).
  23. Aslanoglou, D., George, E. W., Freyberg, Z. Homogeneous Time-resolved Forster Resonance Energy Transfer-based Assay for Detection of Insulin Secretion. Journal of Visualized Experiments. (135), (2018).
  24. Rafati, A., Zarrabi, A., Abediankenari, S., Aarabi, M., Gill, P. Sensitive colorimetric assay using insulin G-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. Royal Sociecy Open Science. 5 (3), 171835 (2018).
  25. Hulleman, J. D., Brown, S. J., Rosen, H., Kelly, J. W. A high-throughput cell-based Gaussia luciferase reporter assay for identifying modulators of fibulin-3 secretion. Journal of Biomolecular Screening. 18 (6), 647-658 (2013).
  26. Frank, J. A., et al. Optical tools for understanding the complexity of beta-cell signalling and insulin release. Nature Reviews Endocrinology. 14 (12), 721-737 (2018).
  27. Zhu, S., et al. Monitoring C-Peptide Storage and Secretion in Islet beta-Cells In Vitro and In Vivo. Diabetes. 65 (3), 699-709 (2016).
check_url/it/59926?article_type=t

Play Video

Citazione di questo articolo
Kalwat, M., Cobb, M. H. Measuring Relative Insulin Secretion using a Co-Secreted Luciferase Surrogate. J. Vis. Exp. (148), e59926, doi:10.3791/59926 (2019).

View Video