Summary

在免疫缺陷小鼠中生成肝脏正交人子宫黑色素瘤异种移植平台

Published: November 06, 2019
doi:

Summary

正交人肝转移性黑色素瘤异种移植小鼠模型是利用手术正位植入技术与患者衍生的肿瘤块和针注射技术与培养人类uveal黑色素瘤细胞系创建。

Abstract

近几十年来,与传统的人类细胞相比,皮下植入的患者衍生异种移植肿瘤或培养的人类细胞系越来越被公认为研究免疫缺陷小鼠中人类癌症的更具代表性的模型。线体外。最近,在小鼠中开发了正位植入患者衍生的肿瘤异种移植(PDX)模型,以更好地复制患者肿瘤的特征。肝正交异种小鼠模型有望成为一个有用的癌症研究平台,为肿瘤生物学和药物治疗提供见解。然而,肝正交肿瘤的植入一般是复杂的。在这里,我们描述了我们治疗患者衍生的肝转移性黑色素瘤肿瘤的正射体植入方案。我们培养人类肝脏转移性黑色素瘤细胞系到免疫缺陷小鼠。这些方案可以使用具有患者衍生的Uveal黑色素瘤块的外科正交植入技术或具有培养人类细胞系的针注射技术,从而持续获得高技术成功率。我们还描述了CT扫描检测内部肝肿瘤和再植入技术使用冷冻肿瘤实现再移植的协议。这些方案共同为肝转移性黑色素瘤的肝正位肿瘤小鼠模型在转化研究中提供了更好的平台。

Introduction

乌韦黑色素瘤是西方成人最常见的眼内恶性肿瘤。在过去50年中,美国1、2个州的乌韦黑色素瘤发病率(百万分之5.1)保持稳定。乌韦黑素瘤产生于虹膜、纤毛体或胆囊中的黑色素细胞,当它发生转移时,它是一种极其致命的疾病。乌韦黑色素瘤转移患者1岁时死亡率为80%,转移初步诊断后2年死亡率为92%。从转移诊断到死亡的时间通常很短,不到6个月,没有治疗3,4。癌症通过血液扩散,并倾向于主要转移到肝脏(89-93%)4,5。为进一步研究肝转移性黑色素瘤,迫切需要一种有效的小鼠模型。对于转化研究,有一个明确的需求,以生成肝脏局部转移性黑色素瘤小鼠模型。

患者衍生的肿瘤异种移植(PDX)小鼠模型有望提供个性化的医学策略。这些模型可能是临床结果的预测,可用于临床前药物评估,并用于肿瘤生物学研究6。代表性的PDX模型是异位植入肿瘤的异种移植小鼠,它们在皮下部位有肿瘤。大多数研究人员可以做手术的皮下植入没有特殊的做法7,8。它们也可以很容易地监测皮下肿瘤。虽然皮下PDX模型在研究阶段开始流行,但在实际应用方面还是有一些障碍。皮下植入迫使患者衍生的肿瘤在肿瘤来源不同的微环境中移植,从而导致移植失败和减缓肿瘤生长9,10,11, 12,1314.对于PDX模型来说,正交可能更理想和合理,因为它使用与原始肿瘤15、16相同的器官。

最近,我们开发了患者衍生肝转移性黑色素瘤肿瘤的外科正交植入技术,以及使用NOD培养的人类肝转移性黑色素瘤细胞系的针注射技术。Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) 小鼠17,18.该协议使技术成功率始终居高不下。我们还建立了CT扫描技术,用于检测内部肝肿瘤,并在PDX平台中开发了冷冻肿瘤的再植入。研究发现,乌韦黑素瘤肿瘤异种移植模型保持原患者肝肿瘤的特征,包括其组织病理学和分子特征。这些技术共同为肝正位肿瘤模型在转化研究中提供了更好的平台。

Protocol

根据机构审查委员会批准的协议,参与研究的患者应提供书面同意,允许将废弃的手术样本用于研究和基因研究。该协议严格按照国家卫生研究院《照料和使用实验室动物指南》中的建议执行,并经机构动物护理和使用委员会(IACUC)批准。 1. 新鲜患者衍生肿瘤组织的集合 从手术或医院手术室的针头活检中获得患者衍生的肿瘤组织。 将肿瘤组织放…

Representative Results

手术正交植入采用肝囊法,可在六个月内将人肝转移性黑色素瘤肿瘤移植到小鼠肝脏,成功率高达80%。异种移植肿瘤在肝脏中作为无女儿结节的单独肿瘤移植(图1和图3A)。手术正交注射技术进入肝脏使用微针成功地移植培养人类肝脏转移性黑色素瘤细胞在肝脏在所有情况下(图2和图3B)?…

Discussion

目前的正交异种异种移植模型是劳动密集型的,耗时的,而且创建成本很高。正交肿瘤异种移植小鼠模型建立于20多年前的19,20,21。然而,这种技术是复杂的,需要使用特殊设备,如微针支架和6-0至8-0在显微镜下细缝合。肿瘤和正常的肝脏组织必须仔细缝合,以便缝合不会损坏脆弱的肝脏组织。传统技术导致并发症,如血肿?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们感谢Ohara、K.斋藤和太太郎审阅了手稿。作者承认福克斯大通癌症中心的Sato博士对这份手稿的编辑和英文协助进行了批判性评论。本文所述工作得到了邦尼·克罗尔研究基金、马克·文齐尔研究基金、托马斯·杰斐逊大学眼黑色素瘤研究基金、大阪社区基金会和大阪市JSPS KAKENHI赠款号JP 18K15596的支持。大学。A. Aplin博士实验室的研究得到了NIH资助R01 GM067893的支持。该项目还由院长的变革科学奖,托马斯杰斐逊大学方案倡议奖资助。

Materials

Materials, tissues and animals
Buprenorphine
CO2 tank
Cryomedium
Exitron nano 12000 (Alkaline earth metal-based nanoparticle contrast agent) Miltenyl Biotec 130-095-700
HBSS 1X, with calcium & magnesium Corning 21-020-CM
Human liver metastatic uveal melanoma cell line
Human uveal melanoma tissue in the liver All tissue handling should be done in a Biosafety Level 2 hood. Be careful when working with human tissue; always use gloves and avoid direct skin contact. Assume patients may have been infected with HIV or other highly transmissible organisms. Do not process samples known to carry infections.
Iodine
Isoflurane Purdue Products 67618-150-17
Isopropanol Fisher scientific A416-1 Avoid direct contact to skin and eye and inhalation of anesthetic agent.
Liquid nitrogen
Matrigel HC BD 354248
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice Jackson Lab 5557 4 to 8 weeks old
PBS 1X, without calcium and magnesium Corning 21-031-CM
RPMI 1640 Corning 10-013-CV
Sterile alcohol prep pad (70% isopropyl alcohol) Nice-Pak products B603
4% paraformaldehyde phosphate buffer solution Wako 163-20145
70% Ethyl alcohol solution Fisher Scientific 04-355-122
Name Company Catalog Number Comments
Equipments
Absorbable hemostat Johnson and Johnson 63713-0019-61
Autoclave
Body weight measure
Cautery Bovie Medical MC-23009
Cell counter
Centrifuzer
Cotton swab
Cryo freezing container NALGENE 5100-0001
Cryotube SARSTEDT 72.379
Curved scissors World Precision Instruments 503247
Curved ultrafine forceps World Precision Instruments 501302
Fabric sheet
Freezer
F/AIR Filter Canister Harvard Apparatus 600979
Heating pad
Isoflurane vaporizer Artisan Scientific 66317-1
Liquid nitrogen
Liquid nitrogen jar Thermo Fisher Scientific 2123
Micro-CT scan Siemens
Needle holder World Precision Instruments 501246
Petri dishes Fisher Scientific FB0875713
Pipette
Spray bottle
Sterile hood Biosafety level 2 cabinet
Sterile No.11 scalpel AD Surgical A300-11-0
Straight forceps World Precision Instruments 14226
Surgical drape
Tail vein restrainer Braintree Scientific TV-150-STD
Water bath
1 ml TB syringe with 27-gauge needle BD 309623
1.7 ml tube Bioexpress C-3260-1
5-0 PDO Suture AD Surgical S-D518R13
15 mL conical tubes AZER SCIENTIFIC ES-9152N
27-gauge needle BD 780301
27-gauge needle Hamilton 7803-01
50 mL conical tubes AZER SCIENTIFIC ES-9502N
50 µl micro syringe BD 80630
50 µl micro syringe Hamilton 7655-01
100 mL container Fisher Scientific 12594997
200μl tip

Riferimenti

  1. Aronow, M. E., Topham, A. K., Singh, A. D. Uveal Melanoma: 5-Year Update on Incidence, Treatment, and Survival (SEER 1973-2013). Ocular Oncology and Pathology. 4 (3), 145-151 (2018).
  2. Krantz, B. A., Dave, N., Komatsubara, K. M., Marr, B. P., Carvajal, R. D. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clinical Ophthalmology. 11, 279-289 (2017).
  3. Gragoudas, E. S., et al. Survival of patients with metastases from uveal melanoma. Ophthalmology. 98 (3), 383-389 (1991).
  4. Diener-West, M., et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Archives of Ophthalmology. 123 (12), 1639-1643 (2005).
  5. Collaborative Ocular Melanoma Study Group. Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. Archives of Ophthalmology. 119 (5), 670-676 (2001).
  6. Hidalgo, M., et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 4 (9), 998-1013 (2014).
  7. Kim, M. P., et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature Protocols. 4 (11), 1670-1680 (2009).
  8. Némati, F., et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clinical Cancer Research. 16 (8), 2352-2362 (2010).
  9. Wilmanns, C., et al. Modulation of Doxorubicin sensitivity and level of p-glycoprotein expression in human colon-carcinoma cells by ectopic and orthotopic environments in nude-mice. International Journal of Oncology. 3 (3), 413-422 (1993).
  10. Kang, Y., et al. Proliferation of human lung cancer in an orthotopic transplantation mouse model. Experimental and Therapeutic. 1 (3), 471-475 (2010).
  11. Fichtner, I., et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clinical Cancer Research. 14 (20), 6456-6468 (2008).
  12. Marangoni, E., et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research. 13 (13), 3989-3998 (2007).
  13. Bergamaschi, A., et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Molecular Oncology. 3 (5-6), 469-482 (2009).
  14. Ho, K. S., Poon, P. C., Owen, S. C., Shoichet, M. S. Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours. BMC Cancer. 12, 579 (2012).
  15. Hoffman, R. M. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nature Reviews Cancer. 15 (8), 451-452 (2015).
  16. Rubio-Viqueira, B., Hidalgo, M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clinical Pharmacology & Therapeutics. 85 (2), 217-221 (2009).
  17. Ozaki, S., et al. Establishment and Characterization of Orthotopic Mouse Models for Human Uveal MelanomaHepatic Colonization. American Journal of Pathology. 186 (1), 43-56 (2016).
  18. Kageyama, K., et al. Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanomahepatic metastasis. Journal of Translational Medicine. 15 (1), 145 (2017).
  19. Fu, X. Y., Besterman, J. M., Monosov, A., Hoffman, R. M. Models of human metastatic colon cancer in nude mice orthotopically constructed by using histologically intact patient specimens. Proceedings of the National Academy of Sciences of the United States of America. 88 (20), 9345-9349 (1991).
  20. Rashidi, B., et al. An orthotopic mouse model of remetastasis of human colon cancer liver metastasis. Clinical Cancer Research. 6 (6), 2556-2561 (2000).
  21. Fan, Z. C., et al. Real-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis. Ricerca sul cancro. 72 (10), 2683-2691 (2012).
  22. Jacob, D., Davis, J., Fang, B. Xenograftictumor modelsinmiceforcancer research, atechnical review. Gene Therapy and Molecular Biology. 8, 213-219 (2004).
  23. Ahmed, S. U., et al. Generation of subcutaneous and intrahepatic human hepatocellular carcinoma xenografts in immunodeficient mice. Journal of Visualized Experiments. 25 (79), e50544 (2013).
  24. Kim, M., et al. Generation of humanized liver mouse model by transplant of patient-derived fresh human hepatocytes. Transplantation Proceedings. 46 (4), 1186-1190 (2014).
  25. Lavender, K. J., Messer, R. J., Race, B., Hasenkrug, K. J. Production of bone marrow, liver, thymus (BLT) humanized mice on the C57BL/6 Rag2(-/-)γc(-/-)CD47(-/-) background. Journal of Immunological Methods. 407, 127-134 (2014).
  26. Boll, H., et al. Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS One. 6 (9), e25692 (2011).
  27. Zhao, X., et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncology. 14 (5), 574-583 (2012).
  28. Rubio-Viqueira, B., et al. An in vivo platform for translational drug development in pancreatic cancer.Clinical. Ricerca sul cancro. 12 (15), 4652-4661 (2006).
  29. Siolas, D., Hannon, G. J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Ricerca sul cancro. 73 (17), 5315-5319 (2013).
  30. Alkema, N. G., et al. Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods. Scientific Reports. 6 (5), 14495 (2015).
check_url/it/59941?article_type=t

Play Video

Citazione di questo articolo
Kageyama, K., Ozaki, S., Sato, T. Generation of a Liver Orthotopic Human Uveal Melanoma Xenograft Platform in Immunodeficient Mice. J. Vis. Exp. (153), e59941, doi:10.3791/59941 (2019).

View Video