Summary

小鼠骨骼肌肉外泄原发性肌基器的分离和分化

Published: October 15, 2019
doi:

Summary

肌细胞是增殖前体细胞,分化形成多核肌管,并最终骨骼肌肌纤维。在这里,我们提出了一个协议,从年轻的成年小鼠骨骼肌肉有效隔离和培养原发性肌体。该方法支持对培养中的肌肉细胞进行分子、遗传和代谢研究。

Abstract

原发性肌体是骨骼肌的无差别增殖前体。它们可以作为肌肉前体培养和研究,或诱导分化到肌肉发育的后期阶段。此处提供的协议描述了一种强大的方法,用于从年轻的成年小鼠骨骼肌外植体中分离和培养高度增殖的肌细胞群。这些细胞可用于研究不同小鼠模型骨骼肌的代谢特性,以及其他下游应用,如外源DNA转染或病毒表达载体转导。这些细胞的分化水平和代谢特征取决于暴露的长度,以及用于诱导月细胞分化的介质的组成。这些方法为研究小鼠肌肉细胞外体代谢提供了强有力的系统。重要的是,与体内模型不同,本文描述的方法提供了一个细胞群,可以扩展和研究具有高重复性。

Introduction

虽然经常被引证为整体代谢健康的指示,但多项研究表明,老年人的身体质量指数(BMI)与较高的死亡率风险并不一致。迄今为止,唯一与降低这一种群死亡率相一致的因素是增加肌肉质量1。肌肉组织是体内胰岛素敏感细胞的最大来源之一,因此对维持整体代谢平衡至关重要。通过运动激活骨骼肌组织与增加局部胰岛素敏感性和整体代谢健康3相关。虽然体内模型对于研究肌肉生理学和肌肉功能对综合代谢的影响至关重要,但肌管的主要培养物提供了一个可处理的系统,可降低动物研究的复杂性。

从产后肌肉衍生的肌末代酶可用于以高度可重复的方式研究多种治疗和生长条件的影响。这早已得到承认,几种方法的月经隔离和文化已经描述了4,5,6,7,8,9。其中一些方法使用新生儿肌肉,产生相对较少的肌体5,8,需要几种动物进行更大规模的研究。此外,大多数广泛使用的培养霉细胞的方法使用”预镀”来丰富于于其他细胞类型粘附性较差的细胞。我们发现这里描述的替代富集方法对于丰富高度增殖的美洲人群体更有效和可重复。总之,该协议允许从年轻的成人肌肉外植分离高增殖性肌体,通过生长到培养培养。月子可以反复收获,在几天内,迅速扩大,并诱导分化成近管。该协议可重复产生大量健康的肌细胞,这些细胞会强力分化成自发抽搐肌细胞。它使我们能够研究各种基因型小鼠的原发性月管的代谢和昼夜节律。最后,我们采用96孔板中耗氧率的测量方法,为氧化代谢研究制备肌管。

Protocol

该协议遵循斯克里普斯研究的动物护理指南。 1. 肌肉组织外泄的收集和处理 解剖前一天,对所有解剖设备(钳子、剃须刀和剪刀)进行消毒,并准备所有必需的介质:磷酸盐缓冲盐水(PBS)、甲基溴电镀介质(DMEM 12.5 mL、HAMS F12 12 12.12 mL、20 mL 热灭活胎牛血清 (FBS), 5 mL 羊水介质补充剂) 和涂层溶液 (24 mL DMEM, 24 mL HAMS F12, 1.7 mL 胶原蛋白, 1 mL 母体凝胶). …

Representative Results

按照所提供的协议第 1 节,应产生从植物外部产生的原细胞,这些细胞将在标准光显微镜下可见(图 2)。异质细胞群将生长在除外每个肌肉组织外部和周围。微球体将显示为小,圆,明亮的球体。根据协议第2节,将产生从组织外植的细胞细胞的早期收获,这将包含很少的细胞,并且将是异质的(图3)。该协议第3节描述了用PB…

Discussion

骨骼肌对于建立和维护代谢平衡11至关重要。肌肉生理学的研究因个体间变异性以及获取样本的困难而变得复杂,特别是在人类研究中。培养的原发性肌管已被证明可以重述肌肉生理学的许多特征,包括钙平衡12、受损肌肉组织的再生5、运动13的代谢改变,糖尿病等疾病引起的新陈代谢的改变。小鼠的肌细…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者感谢墨尔本大学的马修·瓦特博士和约翰霍普金斯大学的阿纳斯塔西娅·克拉利博士,他们根据莫克贝尔等人6号的工作,协助采纳这一协议。我们还感谢萨宾·乔丹博士协助在我们的实验室中制定和通过这一议定书。这项工作由美国国家卫生研究院R01s DK097164和DK112927资助。

Materials

Coating Solution:
DMEM Gibco 10569010 Always add gentamicin (1:1000 by volume) prior to use; 24 mL
HAMS F12 Lonza 12-615F Always add gentamicin (1:1000 by volume) prior to use; 24 mL
Collagen Life Technologies A1064401 1.7 mL
Matrigel Fisher CB40234A 1 mL
Plating Media:
DMEM Gibco 10569010 Always add gentamicin (1:1000 by volume) prior to use; 12.5 mL
HAMS F12 Lonza 12-615F Always add gentamicin (1:1000 by volume) prior to use; 12.5 mL
Heat Inactivated FBS Life Technologies 16000044 20 mL; can be purchased as regular FBS and heat-inactivated by placing in a 40 °C water bath for 20 minutes
Amniomax Life Technologies 12556023 5 mL
Myoblast Media:
DMEM Gibco 10569010 Always add gentamicin (1:1000 by volume) prior to use; 17.5 mL
HAMS F12 Lonza 12-615F Always add gentamicin (1:1000 by volume) prior to use; 17.5 mL
Heat Inactivated FBS Life Technologies 16000044 10 mL; can be purchased as regular FBS and heat-inactivated by placing in a 40 °C water bath for 20 minutes
Amniomax Life Technologies 12556023 5 mL
Differentiation Media:
DMEM Gibco 10569010 Always add gentamicin (1:1000 by volume) prior to use; 24 mL
HAMS F12 Lonza 12-615F Always add gentamicin (1:1000 by volume) prior to use; 24 mL
Heat Inactivated Horse Serum Sigma H1138 1.5 mL
Insulin-Selenium-Transferrin Life Technologies 41400045 0.5 mL
Other Materials:
PBS Gibco 14040133
Gentamicin Sigma G1397
TrypLE Gibco 12604013
DMSO Sigma 472301 Prepare as 10% DMSO in Myoblast Media for freezing cells
Forceps Any
Razor Blades Any
Scissors Any
Whatman paper VWR 21427-648
60 mm plate VWR 734-2318
10 cm plate VWR 25382-428 (CS)
T25 Flasks ThermoFisher 156367
T75 Flasks ThermoFisher 156499
Centrifuge Tubes (15mL) BioPioneer CNT-15
Oxygen Consumption Rates:
Seahorse XFe96 Analyzer Agilent Seahorse XFe96 Analyzer Instrument used to measure oxygen consumption rates read out by acidification of the extracellular media
Seahorse XFe96 FluxPak Agilent 102416-100 96-well plates for use in XFe96 Analyzer
Seahorse XF Cell Mito Stress Test Kit Agilent 103015-100 components may be purchased from other suppliers once assay is established; some recommendations are listed below
Seahorse XF Palmitate-BSA FAO substrate Agilent 102720-100 components may be purchased from other suppliers once assay is established; some recommendations are listed below
Palmitic acid Sigma P5585-10G for measurement of fatty acid oxidation
carnitine Sigma C0283-5G for measurement of fatty acid oxidation
Etomoxir Sigma E1905 for measurement of fatty acid oxidation
BSA Sigma A7030 used as control or in conjugation with palmitic acid for use in measurement of fatty acid oxidation

Riferimenti

  1. Srikanthan, P., Karlamangla, A. S. Muscle mass index as a predictor of longevity in older adults. American Journal of Medicine. 127 (6), 547-553 (2014).
  2. Lee-Young, R. S., Kang, L., Ayala, J. E., Wasserman, D. H., Fueger, P. T. The physiological regulation of glucose flux into muscle in vivo. Journal of Experimental Biology. 214 (2), 254-262 (2010).
  3. Sjøberg, K. A., et al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes. 66 (6), 1501-1510 (2017).
  4. Girgis, C. M., Clifton-Bligh, R. J., Mokbel, N., Cheng, K., Gunton, J. E. Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology. 155 (2), 347-357 (2014).
  5. Smith, J., Merrick, D. Embryonic skeletal muscle microexplant culture and isolation of skeletal muscle stem cells. Methods in Molecular Biology. 633, 29-56 (2010).
  6. Mokbel, N., et al. K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. Brain. 136 (2), 494-507 (2013).
  7. Yaffe, D., Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 270, 725-727 (1977).
  8. Rando, T. A., Blau, H. M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. Journal of Cell Biology. 125 (6), 1275-1287 (1994).
  9. Musarò, A., Carosio, S. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle. Methods in Molecular Biology. 1553, 155-167 (2017).
  10. Smolina, N., Bruton, J., Kostareva, A., Sejersen, T. Assaying mitochondrial respiration as an indicator of cellular metabolism and fitness. Methods in Molecular Biology. 1601, 79-87 (2017).
  11. Elliott, B., Renshaw, D., Getting, S., Mackenzie, R. The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiologica. 205 (3), 324-340 (2012).
  12. Smolina, N., Kostareva, A., Bruton, J., Karpushev, A., Sjoberg, G., Sejersen, T. Primary murine myotubes as a model for investigating muscular dystrophy. BioMed Research International. , (2015).
  13. Nedachi, T., Fujita, H., Kanzaki, M. Contractile C 2 C 12 myotube model for studying exercise-inducible responses in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 295 (5), E1191-E1204 (2008).
  14. Chen, M. B., et al. Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in cultured human skeletal muscle of obese type 2 diabetics. Journal of Clinical Endocrinology and Metabolism. 90 (6), 3665-3672 (2005).
  15. Douillard-Guilloux, G., Mouly, V., Caillaud, C., Richard, E. Immortalization of murine muscle cells from lysosomal α-glucosidase deficient mice: A new tool to study pathophysiology and assess therapeutic strategies for Pompe disease. Biochemical and Biophysical Research Communications. 388 (2), 333-338 (2009).
  16. Varga, B., et al. Myotube elasticity of an amyotrophic lateral sclerosis mouse model. Scientific Reports. 8 (1), 5917 (2018).
  17. Kriebs, A., et al. Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proceedings of the National Academy of Sciences. 114 (33), 8776-8781 (2017).
  18. Cho, Y., et al. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. FASEB Journal. 30 (2), 674-687 (2016).

Play Video

Citazione di questo articolo
Vaughan, M., Lamia, K. A. Isolation and Differentiation of Primary Myoblasts from Mouse Skeletal Muscle Explants. J. Vis. Exp. (152), e60310, doi:10.3791/60310 (2019).

View Video