Summary

反向转录循环介导的等温放大(RT-LAMP)测定,用于对罗非鱼湖病毒进行特定和快速检测

Published: May 18, 2020
doi:

Summary

与传统RT-PCR技术相比,我们提出了一种RT-LAMP测定方法,用于在相对较短的时间内使用简单的仪器检测罗非鱼中的TiLV。该议定书可能有助于控制TiLVD的流行传播,特别是在发展中国家。

Abstract

罗非鱼湖病毒病(TiLVD)是罗非鱼湖病毒(TiLV)引起的罗非鱼病毒病,是水产养殖业的一个长期挑战,导致世界许多地区罗非鱼的大规模发病率和死亡率。因此,有必要对TiLV感染进行有效、快速和准确的诊断检测,以检测最初的感染并防止该病在水产养殖中传播。本研究提出了一种高度灵敏、实用的逆转录环介导的等温放大(RT-LAMP)方法,以检测鱼组织中的罗非鱼湖病毒。对受感染样本的RT-qPCR和RT-LAMP检测的比较显示,63(100%)有阳性结果和 51 (80.95%)样本。此外,对未感染样本的分析表明,所有63个未受感染组织均对RT-qPCR和RT-LAMP检测均产生阴性结果。使用RT-LAMP评估了罗非鱼中5种病原体的交叉反应,所有测试均显示阴性结果。从受感染的鱼获得的肝脏和粘液样本均显示使用RT-LAMP方法的可比结果,表明粘液可用于RT-LAMP作为非致命性检测,以避免杀死鱼。结果表明,该检测结果表明,在1小时内对罗非鱼组织进行TiLV检测提供了一种有效的方法。因此,该方法推荐作为农场的筛选工具,用于快速诊断TiLV。

Introduction

罗非鱼湖病毒病(TiLVD)是罗非鱼病毒性疾病,据说在世界许多地区,包括亚洲1、2、2非洲和美国,导致罗非鱼死亡。1该病于2009年在以色列罗非鱼大规模死亡期间首次得到确认,金内雷特湖的野生罗非鱼数量从每年257吨急剧下降到8吨。这种疾病是由罗非鱼湖病毒(TiLV)引起的,该病毒已被分配给安农韦里达家族作为一种新的属罗拉平病毒和新物种罗非鱼罗拉平病毒3。TiLV的基因特征表明,该病毒是一种新型的包络、负感、单链RNA病毒,具有10个片段编码10个蛋白质1,1、2、4。,4各种品种的罗非鱼属萨罗罗罗登奥利奥米米和提拉平和其他温水鱼(如,巨型葫三(奥斯罗莫斯戈拉米)已被证明易受TiLV22,5。5目前,这种病毒继续在全球传播,可能通过受感染的活鱼66,77的运动,而通过冷冻罗非鱼或其产品传播病毒的风险是有限的8。由于TiLV感染造成的大量死亡率有可能对罗非鱼行业产生重大有害的经济影响。例如,埃及夏季死亡率综合征与TiLV感染有关的经济影响计算为1亿美元。因此,必须开发一种快速和适当的诊断方法,以促进在养鱼场控制这种疾病。

到目前为止,TiLVD的诊断一直基于分子检测、病毒隔离和组织病理学。不同的PCR协议和引素已经开发为TiLV诊断10,11。10,例如,一种基于SYBR的绿色反向转录定量PCR(RT-qPCR)方法,其检测灵敏度为仅两个拷贝/μL,用于TiLV检测10。其他用于TiLV检测的PCR方法包括TaqMan定量PCR11、RT-PCR2、嵌套RT-PCR12和半嵌套11RT-PCR13。1213然而,这些方法需要先进的实验室设备和相对较长的时间来产生结果,由于反应的复杂性,这使得它们不适合现场应用。

循环介导的等温放大(LAMP)测定是一种快速、简单、实用的场内应用14、15。14,该技术采用绞线位移反应原理,而扩增反应在等温条件下运行,没有复杂和昂贵的热循环器14,15。14,因此,放大的LAMP产品或RT-LAMP产品在阶梯状带中进行分析,使用加糖凝胶电泳,带有荧光染色,以安全可视化DNA或RNA14,或用肉眼观察是否存在浊度或白色沉淀物16、17、18。,17,18由于这些原因,该技术已用于现场检测不同的鱼类病原体17、18、19、20、21、22、23、24、25、26、27。17,18,19,20,21,22,23,24,25,26,27本研究的目的是建立一个快速,敏感和准确的RT-LAMP检测的TiLV检测。RT-LAMP测定在30分钟内提供鱼样中TiLV的筛选。该技术可应用于TiLVD的诊断和监测。

Protocol

这项涉及使用动物组织的实验,得到了泰国曼谷卡塞萨特大学机构动物护理和使用委员会的批准(协议号为ACKU61-VET-009)。 1. 组织收集 使用过量的丁香油(即超过3 mL/升)对罗非鱼进行安乐死。三氯苯甲烷硫化剂可用作丁香油的替代品。 使用无菌的梅奥剪刀和钳子切开死后罗非鱼的腹部,切除约30-50毫克的肝脏组织,或使用显微镜盖玻璃,通过纵向刮鱼皮层(?…

Representative Results

在这项研究中,开发了RT-LAMP检测,以检测罗非鱼的TiLV感染。2015年至2016年间,从泰国不同地区的14个农场采集了经测试的样本。受感染和未感染的鱼主要根据身体诊断和有症状的TiLVD的出现进行分组。TiLV感染随后在收集过程后使用RT-PCR得到确认。选择阿加罗斯凝胶电泳和发光绿色检测作为LAMP安培的评估方法(图2)。受感染和未感染的罗非鱼的肝脏和粘液的特点是TiLV疾病症?…

Discussion

水产养殖业不断受到病毒感染的威胁,造成直接经济损失99、23、28。23,28例如,世界上许多地区的罗非鱼生产国对罗非鱼生产国构成重大1,6,威胁。到目前为止,还没有特定的治疗药物可用于预防TiLVD。虽然疫苗的开发正在进行中,但高效疫苗在可用于商业目…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

该项目由泰国研究基金(TRF)赠款号RDG6050078和泰国曼谷卡塞萨特大学高级研究所农业和食品高级研究中心资助,泰国高等教育研究促进和国立研究大学项目,高等教育委员会办公室,泰国教育部。这项研究部分由卡塞萨特大学研究生院研究生课程奖学金提供支持。作者要感谢KwanraweeeSirikanchana博士对这段视频的叙述和对皮亚瓦萨拉·西卡林编辑视频的叙述。

Materials

Tissue collection:
Clove oil Better Pharma N/A
Tricaine methanesulfonate Sigma-Aldrich E10521 An alternative option to clove oil
RNA extraction:
Acid guanidinium-phenol based reagent (TRIzol reagent) ThermoFisher Scientific Corp. 15596026
Acid guanidinium-phenol based reagent (GENEzol reagent) Geneaid GZR100
Direct-zol RNA Kit: Zymo Research R2071
– Direct-zol RNA PreWash
– RNA Wash Buffer
– DNase/RNase-free water
– Zymo-spin IIICG columns
– Collection Tubes
RT-LAMP:
1x SD II reaction buffer Biotechrabbit BR1101301
Magnesium sulfate (MgSO4) Sigma-Aldrich 7487-88-9
dNTP set Bioline BIO-39053
Betaine Sigma-Aldrich B2629
Calcein mixture Merck 1461-15-0
Bst DNA polymerase Biotechrabbit BR1101301
AMV reverse transcriptase Promega M510A
Nuclease-free water Invitrogen 10320995
Elite dry bath incubator, single unit Major Science EL-01-220
Gel electrophoresis:
Agarose Vivantis Technologies PC0701-500G
Tris-borate-EDTA (TBE) buffer Sigma-Aldrich SRE0062
Tris-acetic-EDTA (TAE) buffer:
– Tris Vivantis Technologies PR0612-1KG
– Acetic acid (glacial), EMSURE Merck Millipore 1000632500
– Disodium Ethylenediaminetetraacetate dihydrate (EDTA), Vetec Sigma-Aldrich V800170-500G
Neogreen NeoScience Co., Ltd. GR107
DNA gel loading dye (6X) ThermoFisher Scientific Corp. R0611
DNA ladder and markers Vivantis Technologies PC701-100G
Mini Ready Sub-Cell GT (Horizontal electrophoresis system) Bio-Rad 1704487
PowerPac HC power supply Bio-Rad 1645052
Gel Doc EZ System Bio-Rad 1708270
UV sample tray Bio-Rad 1708271
NαBI imager Neogene Science
cDNA synthesis:
ReverTra Ace qPCR RT Kit Toyobo FSQ-101
Viva cDNA Synthesis Kit Vivantis Technologies cDSK01 An alternative option for cDNA synthesis
NanoDrop2000 (microvolume spectrophotometer) ThermoFisher Scientific Corp. ND-2000
T100 Thermal Cycler Bio-Rad 1861096
RT-qPCR:
iTaq Universal SYBR Green Supermix Bio-Rad 1725120
Nuclease-free water, sterile water MultiCell 809-115-CL
8-tube PCR strips, white Bio-Rad TLS0851
Flat PCR tube 8-cap strips, optical Bio-Rad TCS0803
CFX96 Touch Thermal Cycler Bio-Rad 1855196
General equipment and materials:
Mayo scissors N/A
Forceps N/A
Vortex Genie 2 (vortex mixer) Scientific Industries
Microcentrifuge LM-60 LioFuge CM610
Corning LSE mini microcentrifuge Corning 6765
Pipettes Rainin Pipete-Lite XLS
QSP filtered pipette tips Quality Scientific Plastics TF series
Corning Isotip filtered tips Merck CLS series
Nuclease-free 1.5 mL microcentrifuge tubes, NEST Wuxi NEST Biotechnology 615601

Riferimenti

  1. Surachetpong, W., et al. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015-2016. Emerging Infectious Diseases. 23 (6), 1031-1033 (2017).
  2. Eyngor, M., et al. Identification of a novel RNA virus lethal to tilapia. Journal of Clinical Microbiology. 52 (12), 4137-4146 (2014).
  3. Adams, M. J., et al. Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2017). Archives of Virology. 162 (8), 2505-2538 (2017).
  4. Bacharach, E., et al. Characterization of a Novel Orthomyxo-like Virus Causing Mass Die-Offs of Tilapia. MBio. 7 (2), 00431 (2016).
  5. Jaemwimol, P., et al. Susceptibility of important warm water fish species to tilapia lake virus (TiLV) infection. Aquaculture. 497, 462-468 (2018).
  6. Giews, F. Global Information and Early Warning System On Food And Agriculture. Food and Agriculture Organization of the United Nations. , (2017).
  7. Al-Hussinee, L., Subramaniam, K., Ahasan, M. S., Keleher, B., Waltzek, T. B. Complete Genome Sequence of a Tilapia Lake Virus Isolate Obtained from Nile Tilapia (Oreochromis niloticus). Genome Announcements. 6 (26), (2018).
  8. Thammatorn, W., Rawiwan, P., Surachetpong, W. Minimal risk of tilapia lake virus transmission via frozen tilapia fillets. Journal of Fish Diseases. 42 (1), 3-9 (2019).
  9. Fathi, M., et al. Identification of Tilapia Lake Virus in Egypt in Nile tilapia affected by ‘summer mortality’ syndrome. Aquaculture. 473, 430-432 (2017).
  10. Tattiyapong, P., Sirikanchana, K., Surachetpong, W. Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish. Journal of Fish Diseases. 41 (2), 255-261 (2018).
  11. Waiyamitra, P., et al. A TaqMan RT-qPCR assay for tilapia lake virus (TiLV) detection in tilapia. Aquaculture. 497, 184-188 (2018).
  12. Kembou Tsofack, J. E., et al. Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR. Journal of Clinical Microbiology. 55 (3), 759-767 (2017).
  13. Dong, H. T., et al. Emergence of tilapia lake virus in Thailand and an alternative semi-nested RT-PCR for detection. Aquaculture. 476, 111-118 (2017).
  14. Notomi, T., et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 28 (12), 63 (2000).
  15. Mori, Y., Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy. 15 (2), 62-69 (2009).
  16. Mori, Y., Nagamine, K., Tomita, N., Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications. 289 (1), 150-154 (2001).
  17. Caipang, C. M., Haraguchi, I., Ohira, T., Hirono, I., Aoki, T. Rapid detection of a fish iridovirus using loop-mediated isothermal amplification (LAMP). Journal of Virological Methods. 121 (2), 155-161 (2004).
  18. Soliman, H., El-Matbouli, M. An inexpensive and rapid diagnostic method of Koi Herpesvirus (KHV) infection by loop-mediated isothermal amplification. Virology Journal. 2, 83 (2005).
  19. Gunimaladevi, I., Kono, T., Venugopal, M. N., Sakai, M. Detection of koi herpesvirus in common carp, Cyprinus carpio L., by loop-mediated isothermal amplification. Journal of Fish Diseases. 27 (10), 583-589 (2004).
  20. Gunimaladevi, I., Kono, T., Lapatra, S. E., Sakai, M. A loop mediated isothermal amplification (LAMP) method for detection of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Archives of Virology. 150 (5), 899-909 (2005).
  21. Kono, T., Savan, R., Sakai, M., Itami, T. Detection of white spot syndrome virus in shrimp by loop-mediated isothermal amplification. Journal of Virological Methods. 115 (1), 59-65 (2004).
  22. Soliman, H., El-Matbouli, M. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of viral hemorrhagic septicaemia virus (VHS). Veterinary Microbiology. 114 (3-4), 205-213 (2006).
  23. Yeh, H. Y., Shoemaker, C. A., Klesius, P. H. Evaluation of a loop-mediated isothermal amplification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri. Journal of Microbiological Methods. 63 (1), 36-44 (2005).
  24. Yeh, H. Y., Shoemaker, C. A., Klesius, P. H. Sensitive and rapid detection of Flavobacterium columnare in channel catfish Ictalurus punctatus by a loop-mediated isothermal amplification method. Journal of Applied Microbiology. 100 (5), 919-925 (2006).
  25. Sun, Z. F., Hu, C. Q., Ren, C. H., Shen, Q. Sensitive and rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimps by loop-mediated isothermal amplification. Journal of Virological Methods. 131 (1), 41-46 (2006).
  26. Shivappa, R. B., et al. Detection of spring viraemia of carp virus (SVCV) by loop-mediated isothermal amplification (LAMP) in koi carp, Cyprinus carpio L. Journal of Fish Diseases. 31 (4), 249-258 (2004).
  27. Wei, X. N., Zheng, Z. J., Zhang, L. H., Qu, F., Huang, X. Sensitive and rapid detection of Aeromonas caviae in stool samples by loop-mediated isothermal amplification. Diagnostic Microbiology and Infectious Disease. 60 (1), 113-116 (2008).
  28. Chinabut, S., Puttinaowarat, S. The choice of disease control strategies to secure international market access for aquaculture products. Biologia dello sviluppo. 121, 255-261 (2005).
  29. Soto, E., Yun, S., Surachetpong, W. Susceptibility of Tilapia Lake Virus to buffered Povidone-iodine complex and chlorine. Aquaculture. 512, 734342 (2019).
  30. Jaemwimol, P., Sirikanchana, K., Tattiyapong, P., Mongkolsuk, S., Surachetpong, W. Virucidal effects of common disinfectants against tilapia lake virus. Journal of Fish Diseases. 42 (10), 1383-1389 (2019).
  31. Jansen, M. D., Dong, H. T., Mohan, C. V. Tilapia lake virus: a threat to the global tilapia industry. Reviews in Aquaculture. 11 (3), 725-739 (2019).
  32. Yin, J., et al. Development of a simple and rapid reverse transcription-loopmediated isothermal amplification (RT-LAMP) assay for sensitive detection of tilapia lake virus. Journal of Fish Diseases. 42 (6), 817-824 (2019).
  33. Savan, R., Kono, T., Itami, T., Sakai, M. Loop-mediated isothermal amplification: an emerging technology for detection of fish and shellfish pathogens. Journal of Fish Diseases. 28 (10), 573-581 (2005).
  34. Phusantisampan, T., Tattiyapong, P., Mutrakulcharoen, P., Sriariyanun, M., Surachetpong, W. Rapid detection of tilapia lake virus using a one-step reverse transcription loop-mediated isothermal amplification assay. Aquaculture. 507, 35-39 (2019).
  35. Liamnimitr, P., Thammatorn, W., U-thoomporn, S., Tattiyapong, P., Surachetpong, W. Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture. Aquaculture. 486, 75-80 (2018).
  36. Yin, J., et al. Development of a simple and rapid reverse transcription-loopmediated isothermal amplification (RT-LAMP) assay for sensitive detection of tilapia lake virus. Journal of Fish Diseases. 42 (6), 817-824 (2019).
  37. Khan, R. S. A., et al. Rapid detection of infectious bursal disease by loop-mediated isothermal amplification for field analysis. Iranian Journal of Veterinary Research. 19 (2), 101-107 (2018).
  38. Nagamine, K., Hase, T., Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes. 16 (3), 223-229 (2002).
  39. Debode, F., Marien, A., Janssen, E., Bragard, C., Berben, G. The influence of amplicon length on real-time PCR results. Biotechnology, Agronomy, Society and Environment. 21 (1), 3-11 (2017).
check_url/it/61025?article_type=t

Play Video

Citazione di questo articolo
Phusantisampan, T., Rawiwan, P., Roy, S. R. K., Sriariyanun, M., Surachetpong, W. Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for the Specific and Rapid Detection of Tilapia Lake Virus. J. Vis. Exp. (159), e61025, doi:10.3791/61025 (2020).

View Video