Summary

一种富含病毒的接种物用于蜜蜂口腔感染(Apis mellifera)的制备

Published: August 26, 2020
doi:

Summary

在这里,我们描述了两种方案:第一种是繁殖,提取,纯化和量化大量蜜蜂非包膜病毒颗粒,包括去除蜜蜂蛹的方法,其次是使用高度可重复的高通量笼式生物测定来测试病毒感染的影响。

Abstract

蜜蜂在世界各地具有重要的生态和农业重要性,但也受到各种压力的影响,这些压力对蜜蜂健康产生负面影响,包括暴露于病毒病原体。这种病毒可以引起各种各样的破坏性影响,并且由于多种因素使得难以将实验性治疗的影响与先前存在的背景感染区分开来,因此通常很难进行研究。在这里,我们提出了一种大规模生产大量病毒颗粒的方法以及高通量生物测定法,以测试病毒感染和效果。由于目前缺乏连续的无病毒蜜蜂细胞系,因此使用蜜蜂蛹 在体内 扩增病毒颗粒,使用最小压力的方法从蜂巢中大量提取病毒颗粒。然后,这些病毒颗粒可用于蜜蜂笼生物测定,以测试接种的活力,以及各种其他病毒感染动力学,包括与营养,杀虫剂和其他病原体的相互作用。使用这种颗粒的一个主要优点是,与目前的替代品相比,它大大减少了在后续实验中引入未知变量的机会,例如通过受感染的蜜蜂血淋巴或匀浆物感染,尽管在采购蜜蜂时仍应小心,以尽量减少背景病毒污染。笼式测定不能替代在菌落水平上测试病毒感染效应的大规模,现场现实实验,而是作为建立基线病毒反应的方法,与半纯病毒颗粒相结合,可以作为检查蜜蜂 – 病毒生理相互作用各个维度的重要工具。

Introduction

蜜蜂(Apis mellifera)在现代全球农业景观中发挥着关键作用,但目前正遭受生物和非生物胁迫因素的结合,包括农药暴露,饲料不良,寄生虫和病原体12。最受关注的最重要病原体之一是病毒,其中许多是由另一个主要的蜜蜂压力源,寄生的Varroa螨(Varroa destructor)传播的。这些病毒可以在蜜蜂中引起一系列负面影响,包括育雏存活率降低,发育缺陷和瘫痪,从而导致越冬前后蜂巢完全崩溃345。尽管在用于对抗病毒感染的技术开发方面取得了可喜的进步6789,但许多病毒在蜜蜂或蜂群中传播,传播和相互作用的动态仍然知之甚少510.了解蜜蜂和病毒相互作用的基本生物学及其与其他环境因素的关系对于开发有效的病毒管理技术至关重要。

然而,研究蜜蜂 – 病毒相互作用带来了挑战,许多已知和未知因素使该过程复杂化。这些包括与饮食1112,农药暴露13和蜜蜂遗传背景1415的相互作用。即使仅关注病毒感染,并发症也很常见,因为蜜蜂种群,无论是管理的还是野生的,总是有一定程度的背景病毒感染,尽管通常没有表现出急性症状1617,并且病毒合并感染的影响尚不清楚18。这使得对蜜蜂病毒影响的研究难以解开。

许多蜜蜂病毒研究已经使用间接病毒感染来寻找与其他应激源的相互作用,观察背景感染如何随着其他治疗而变化12192021。虽然这种方法已经成功地确定了重要的效果,特别是发现农药或饮食治疗如何影响病毒水平和复制,但用已知含量和浓度的病毒治疗进行接种对于病毒感染动态的实验测试至关重要。即便如此,将实验性治疗与背景感染分开也可能带来挑战。在实地研究中,研究人员已经区分了变形翅膀病毒(DWV)的菌株,为病毒从蜜蜂传播到大黄蜂22提供证据,但仅使用这种方法很难在蜜蜂中。病毒传染性克隆是一种强大的工具,不仅用于跟踪感染232425 ,还用于蜜蜂病毒的反向遗传学研究和病毒 – 宿主相互作用研究262728。然而,在大多数情况下,感染性克隆仍然需要满足细胞内的感染周期以产生颗粒。这种颗粒优选作为实验治疗的接种,因为它们的感染性高于裸病毒RNA,并且用包裹的基因组接种模仿自然感染。

生产纯的、未受污染的蜜蜂病毒接种(野生型病毒株或来自传染性克隆的病毒株)也带来了挑战。这些主要是由于难以获得可靠,连续复制,无病毒的蜜蜂细胞系来产生纯病毒株2930。虽然已经产生了一些细胞系,但这些系统仍然不完美;尽管如此,仍有希望产生29个可行的细胞系,这将允许更好地控制病毒的产生和研究。在这样的生产线变得广泛可用之前,大多数病毒生产方案将继续依赖于使用 体内 病毒生产和纯化1831323334。这些方法涉及鉴定和纯化感兴趣的病毒颗粒(或产生传染性克隆),并使用它们来感染蜜蜂,通常为蛹。将蛹注入靶病毒然后处死,并提取和纯化进一步的颗粒。然而,由于没有蜜蜂一开始就没有病毒,因此任何此类浓缩物中其他病毒的痕迹总是存在一定程度的污染,因此,在选择背景感染可能性较低的蜜蜂时必须格外小心。此外,用于从梳状细胞中除去蛹的方法用于这些方案33 是非常劳动密集型的,并且可以在蜜蜂中诱导压力,通过这些方法限制生产1832。在这里,我们报告了一种替代方法,该方法允许大规模去除幼虫,只需很少的劳动和对蜜蜂的机械应力。

一旦获得蛹并注射起始病毒接种物,必须将它们孵育以提供病毒复制时间。随后,产生的病毒颗粒可以被加工成可用于感染实验蜜蜂的形式。有几种简单的方法可以实现这一点,包括使用由病毒感染的蜜蜂产生的粗匀浆3536 或血淋巴作为感染源37。这些方法是有效的,但从背景基质中引入未知变量的机会更大(例如,死蜂匀浆中的其他因素)。此外,如果实验需要在短时间内给予大剂量的已知剂量的病毒,则希望浓缩颗粒。因此,为了更好地控制,最好使用允许一定程度的病毒颗粒纯化和浓缩的方法。通常,一系列的沉淀和离心步骤将导致除去几乎所有可能的非目标病毒物质33

在生产这种浓缩的接种物后,定量病毒滴度(qPCR)并用 体内 生物测定法表征它是有益的,以测试其活力和导致死亡的能力,以及证实感染后获得的病毒滴度增加。这可以通过注射实验(进入蛹或成虫)或喂养实验(进入幼虫或成虫)来实现。虽然所有这些方法都是可能的,但在笼子里喂养成群的成年蜜蜂通常是最快和最简单的。笼式测定法还广泛用于测试蜜蜂的各种其他处理方法,包括农药毒性38,卵巢发育39和营养对行为的影响4041 ,因此,可以形成将病毒感染与其他因素42联系起来的实验的良好基础。

在这里,我们描述了一种在不使用昂贵的超速离心机的情况下生产大量半纯,高度富集的病毒颗粒的可靠方法,包括一种去除蛹的方法,以减少蜜蜂的劳动和机械应力,以及用于测试病毒感染和影响的高可重复性,高通量生物测定。通过严格控制病毒接种的纯度,研究人员能够减少蜜蜂病毒反应相对于其他病毒接种方法的变化。此外,生物测定可以在扩展到现场现实设置之前,使用高度可重复的实验单元在小组级别筛选病毒效应,这需要管理更多的劳动密集型。结合这两种方法,这两种方法为研究提供了必要的工具,可以帮助提高我们对蜜蜂 – 病毒生理相互作用的整体理解。

Protocol

1. 大规模蜜蜂提取选项1:幼虫自我清除 把一只蜜蜂女王关在一个空的、拉长的Langstroth框架上,把她送回她的殖民地。让蜂王在这个框架上产卵24小时。 24小时后检查框架,以确保大多数梳状细胞含有新产卵。根据蜂王和蚁群的不同,卵有时在最初的24小时内产得不是很好。如果发生这种情况,请再留出24小时,并根据需要调整时间。 在24小时产卵期后,释放蜂王。清…

Representative Results

成功遵循蛹注射和病毒提取的方案(图1)应产生大量病毒颗粒。然而,在多个时间点对来自各种菌落的蛹进行取样和注射,可以最大限度地提高获得低污染目标病毒的机会。病毒在蜜蜂中相互复制和相互作用的动态尚不清楚;再加上预先存在的感染的可能性,不能保证注射的(所需的)病毒会成为任何给定蛹中的优势,即使蛹是从同一原始菌落取样的。 图4 显示…

Discussion

在这里,我们概述了详细介绍病毒扩增和接种原液制备过程的每个步骤的方法,包括幼虫收集和病毒繁殖,提取和浓缩,以及以笼中喂养实验的形式进行病毒处理。这些方法允许生产半纯病毒颗粒(图4),其有效性可以通过对成人致命的病毒的剂量反应死亡率测试来一致地量化(图5)。在确认感染能力和/或病理学后,生成的颗粒可用于生物测定,以?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

我们要感谢Julia Fine博士在协议创建过程中的想法和讨论,以及Cassondra Vernier博士在整个编辑过程中的有用评论。这些材料为部分由粮食和农业研究基金会根据赠款ID 549025支持的项目做出了贡献。

Materials

10% bleach solution
24:1 chloroform:isoamyl alcohol SigmaAldrich C0549
70% ethanol solution
Cages for bioassay Dependent on experimental setup
Combitips Advanced 0.1 mL Eppendorf 30089405 Optional (if no injector appartus is available)
Containers for larval self-removal Should measure roughly 19" x 9-1/8" (Langstroth deep frame dimensions)
Forceps Blunt, soft forceps for larval separationl; blunt, hard forceps for pupal excision
Fume hood
Incubator Capable of maintaining 34 ºC and 50% relative humidity
Kimwipes Fisher Scientific 06-666 Any absorbent wipe will work
Medium-sized weight boats Serve as inoculum trays
Microcon-100kDa with Biomax membrane MilliporeSigma MPE100025
NaCl
Nitrile gloves
Phosphate buffered saline (PBS) SigmaAldrich P5119
Polyethylene glycol 8000 (PEG) SigmaAldrich 1546605
Refrigerated benchtop centrifuge Capable of 15,000 x g
Refrigerated centrifuge Capable of 21,000 x g
Repeater M4 Multipipette Eppendorf 4982000322 Optional (if no injector appartus is available)
RNAse Away ThermoFisher 7000TS1
RNAse-free water SigmaAldrich W4502
Sucrose
TES SigmaAldrich T1375

Riferimenti

  1. vanEngelsdorp, D., Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology. 103, 80-95 (2010).
  2. Goulson, D., Nicholls, E., Botías, C., Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 347 (6229), 1255957 (2015).
  3. Chen, Y. P., et al. Israeli acute paralysis virus: Epidemiology, pathogenesis and implications for honey bee health. PLoS Pathogens. 10 (7), 1004261 (2014).
  4. Natsopoulou, M. E., et al. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honey bee worker loss. Scientific Reports. 7 (1), 5242 (2017).
  5. Grozinger, C. M., Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annual Review of Entomology. 64, 205-226 (2019).
  6. Maori, E., et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Molecular Biology. 18 (1), 55-60 (2009).
  7. Hunter, W., et al. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathogens. 6 (12), 1001160 (2010).
  8. Leonard, S. P., et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science. 367 (6477), 573-576 (2020).
  9. Park, M. G., et al. Development of a Bacillus thuringiensis based dsRNA production platform to control sacbrood virus in Apis cerana. Pest Management Science. 76 (5), 1699-1704 (2020).
  10. Brutscher, L. M., Daughenbaugh, K. F., Flenniken, M. L. Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science. 10, 71-82 (2015).
  11. Dolezal, A. G., et al. Interacting stressors matter: Diet quality and virus infection in honey bee health. Royal Society Open Science. 6 (2), 181803 (2019).
  12. Li, J., et al. Pollen reverses decreased lifespan, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. Journal of Experimental Biology. 222 (7), 202077 (2019).
  13. Harwood, G. P., Dolezal, A. G. Pesticide – interactions in honey bees: Challenges and opportunities for understanding drivers of bee declines. Viruses. 12 (5), 566 (2020).
  14. Locke, B., Forsgren, E., De Miranda, J. R. Increased tolerance and resistance to virus infections: A possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PLoS ONE. 9 (6), 99998 (2014).
  15. Thaduri, S., Stephan, J. G., de Miranda, J. R., Locke, B. Disentangling host-parasite-pathogen interactions in a varroa-resistant honey bee population reveals virus tolerance as an independent, naturally adapted survival mechanism. Scientific Reports. 9 (1), 6221 (2019).
  16. Chen, Y., Zhao, Y., Hammond, J., Hsu, H. T., Evans, J., Feldlaufer, M. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. Journal of Invertebrate Pathology. 87 (2-3), 84-93 (2004).
  17. Runckel, C., et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One. 6 (6), 20656 (2011).
  18. Carrillo-Tripp, J., et al. In vivo and in vitro infection dynamics of honey bee viruses. Scientific Reports. 6, 22265 (2016).
  19. Di Prisco, G., et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences of the United States of America. 110 (46), 18466-18471 (2013).
  20. Degrandi-Hoffman, G., Chen, Y., Dejong, E. W., Chambers, M. L., Hidalgo, G. Effects of oral exposure to fungicides on honey bee nutrition and virus levels. Journal of Economic Entomology. 108 (6), 2518-2528 (2015).
  21. Negri, P., et al. Towards precision nutrition: A novel concept linking phytochemicals, immune response and honey bee health. Insects. 10 (11), 10110401 (2019).
  22. Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J., Brown, M. J. F. Disease associations between honey bees and bumblebees as a threat to wild pollinators. Nature. 506 (7488), 364-366 (2014).
  23. Lamp, B., et al. Construction and rescue of a molecular clone of Deformed wing virus (DWV). PLoS One. 11 (11), 0164639 (2016).
  24. Gusachenko, O. N., Woodford, L., Balbirnie-Cumming, K., Ryabov, E. V., Evans, D. J. Deformed wing virus spillover from honey bees to bumble bees: A reverse genetic study. bioRxiv. , (2019).
  25. Ryabov, E. V., et al. Dynamic evolution in the key honey bee pathogen deformed wing virus: Novel insights into virulence and competition using reverse genetics. PLoS Biology. 17 (10), 3000502 (2019).
  26. Benjeddou, M., Leat, N., Allsopp, M., Davison, S. Development of infectious transcripts and genome manipulation of Black queen-cell virus of honey bees. Journal of General Virology. 83 (12), 3139-3146 (2002).
  27. Seitz, K., et al. A molecular clone of Chronic Bee Paralysis Virus (CBPV) causes mortality in honey bee pupae (Apis mellifera). Scientific Reports. 9 (1), 16274 (2019).
  28. Yang, S., et al. A reverse genetics system for the israeli acute paralysis virus and chronic bee paralysis virus. International Journal of Molecular Sciences. 21 (5), 1742 (2020).
  29. Guo, Y., Goodman, C. L., Stanley, D. W., Bonning, B. C. Cell lines for honey bee virus research. Viruses. 12 (2), 1-17 (2020).
  30. Goblirsch, M. J., Spivak, M. S., Kurtti, T. J. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLoS One. 8 (7), 69831 (2013).
  31. Azzami, K., Ritter, W., Tautz, J., Beier, H. Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Archives of Virology. 157 (4), 689-702 (2012).
  32. Boncristiani, H. F., et al. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS One. 8 (9), 73429 (2013).
  33. De Miranda, J. R., et al. Standard methods for virus research in Apis mellifera. Journal of Apicultural Research. 52 (4), 1-56 (2013).
  34. Posada-Florez, F., et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Scientific Reports. 9 (1), 12445 (2019).
  35. Singh, R., et al. RNA viruses in hymenopteran pollinators: Evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS One. 5 (12), 14357 (2010).
  36. Fine, J. D., Cox-Foster, D. L., Mullin, C. A. An inert pesticide adjuvant synergizes viral pathogenicity and mortality in honey bee larvae. Scientific Reports. 7, 40499 (2017).
  37. Palmer-Young, E. C., et al. Nectar and pollen phytochemicals stimulate honey bee (Hymenoptera: Apidae) immunity to viral infection. Journal of Economic Entomology. 110 (5), 1959-1972 (2017).
  38. Iwasa, T., Motoyama, N., Ambrose, J. T., Roe, R. M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection. 23 (5), 371-378 (2004).
  39. Hoover, S. E. R., Keeling, C. I., Winston, M. L., Slessor, K. N. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften. 90 (10), 477-480 (2003).
  40. Toth, A. L., Kantarovich, S., Meisel, A. F., Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. Journal of Experimental Biology. 208 (24), 4641-4649 (2005).
  41. Walton, A., Dolezal, A. G., Bakken, M. A., Toth, A. L. Hungry for the queen: Honey bee nutritional environment affects worker pheromone response in a life stage-dependent manner. Functional Ecology. 32 (12), 2699-2706 (2018).
  42. Williams, G. R., et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. Journal of Apicultural Research. 52 (1), 1-36 (2013).
  43. Robertson, J. L., Olguin, E., Alberts, B., Jones, M. M. . Bioassays with arthropods. , (2007).
  44. Gauthier, L., et al. The Apis mellifera filamentous virus genome. Viruses. 7 (7), 3798-3815 (2015).
  45. Hsieh, E. M. Ameliorative effects of phytochemical ingestion on viral infection in honey bees. University of Illinois at Urbana-Champaign. , (2020).
  46. Zhang, G., St. Clair, A. L., Dolezal, A., Toth, A. L., O’Neal, M. Honey Bee (Hymenoptera: Apidea) pollen forage in a highly cultivated agroecosystem: Limited diet diversity and its relationship to virus resistance. Journal of Economic Entomology. 113 (3), 1062-1072 (2020).
  47. Geffre, A. C., et al. Honey bee virus causes context-dependent changes in host social behavior. Proceedings of the National Academy of Sciences of the United States of America. 117 (19), 10406-10413 (2020).
  48. Rutter, L., et al. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics. 20 (1), 412 (2019).

Play Video

Citazione di questo articolo
Hsieh, E. M., Carrillo-Tripp, J., Dolezal, A. G. Preparation of Virus-Enriched Inoculum for Oral Infection of Honey Bees (Apis mellifera). J. Vis. Exp. (162), e61725, doi:10.3791/61725 (2020).

View Video