Summary

睡眠美人转座转染人视网膜色素上皮细胞氧化应激的诱导与分析

Published: December 11, 2020
doi:

Summary

我们提出了一种开发和使用氧化应激模型的方案,方法是用H2O2处理视网膜色素上皮细胞,分析细胞形态,活力,密度,谷胱甘肽和UCP-2水平。它是研究转座子转染细胞分泌的蛋白质治疗神经视网膜变性的抗氧化作用的有用模型。

Abstract

氧化应激在几种退行性疾病中起着关键作用,包括年龄相关性黄斑变性(AMD),这是一种影响全球约3000万患者的病理。它导致视网膜色素上皮 (RPE) 合成的神经保护因子减少,例如色素上皮衍生因子 (PEDF) 和粒细胞-巨噬细胞集落刺激因子 (GM-CSF),随后 RPE 细胞丢失,最终导致光感受器和视网膜神经节细胞 (RGC) 死亡。我们假设通过转染的RPE细胞过表达PEDF和GM-CSF的视网膜下移植来重建神经保护性和神经源性视网膜环境,有可能通过减轻氧化应激的影响,抑制炎症和支持细胞存活来预防视网膜变性。使用 睡美人 转座子系统(SB100X),人RPE细胞已经转染了 PEDF GM-CSF 基因,并使用qPCR,蛋白质印迹,ELISA和免疫荧光显示出稳定的基因整合,长期基因表达和蛋白质分泌。为了确认转染的RPE细胞分泌的 PEDF GM-CSF 的功能和效力,我们开发了一种体外测定法来量化培养物中H2O2诱导的氧化应激对RPE细胞的减少。通过分析细胞形态、密度、谷胱甘肽的细胞内水平 、UCP2 基因表达和细胞活力来评估细胞保护。与未处理的对照相比,转染的RPE细胞过度表达PEDF和/或GM-CSF以及未转染但用PEDF和/或GM-CSF(市售或从转染细胞中纯化)预处理的细胞显示出显着的抗氧化细胞保护。目前的H2O2模型是一种简单有效的方法来评估可能有效治疗AMD或类似神经退行性疾病的因子的抗氧化作用。

Introduction

这里描述的模型为评估生物制药剂减少细胞氧化应激的效率提供了一种有用的方法。我们利用该模型研究了PEDF和GM-CSF对H2O2介导的氧化应激对视网膜色素上皮细胞的保护作用,这些细胞暴露于高水平的O2和可见光,以及光感受器外段膜的吞噬作用,产生显着水平的活性氧(ROS)1, 2.它们被认为是缺血性年龄相关性黄斑变性(aAMD)发病机制的主要贡献者3,4,5,6,7,8。此外,RPE合成的神经保护因子减少,特别是色素上皮衍生因子(PEDF),胰岛素样生长因子(IGF)和粒细胞巨噬细胞集落刺激因子(GM-CSF)导致RPE细胞的功能障碍和丢失,其次是光感受器和视网膜神经节细胞(RGC)死亡3,4,5.AMD是一种复杂的疾病,由代谢,功能,遗传和环境因素之间的相互作用引起4。缺乏对aAMD的治疗是工业化国家60岁以上患者失明的主要原因9,10。通过视网膜下移植过表达PEDF和GM-CSF的转基因RPE细胞重建神经保护性和神经源性视网膜环境,有可能通过减轻氧化应激的影响,抑制炎症和支持细胞存活来预防视网膜变性11,12,13,14,15,16.尽管有几种方法将基因递送到细胞,但我们选择了非病毒性过度活跃的睡美人转座子系统将PEDFGM-CSF基因递送到RPE细胞,因为它的安全性,基因整合到宿主细胞的基因组中,以及它倾向于将递送的基因整合到非转录活性位点中,正如我们之前所展示的那样17, 18,19.

细胞氧化应激可以通过几种氧化剂在体外培养的细胞中诱导,包括过氧化氢(H2O 2),4-氢炔诺(HNE),过氧化氢叔丁酯(tBH),高氧张力和可见光(全光谱或紫外线照射)20,21。高氧张力和光需要特殊的设备和条件,这限制了向其他系统的可转移性。H 2 O2、HNE和 tBH 等试剂可诱导重叠的氧化应激分子和细胞变化。我们选择H2O2来测试PEDF和GM-CSF的抗氧化活性,因为它方便且具有生物学相关性,因为它是由RPE细胞在光感受器外段吞噬作用22期间作为活性氧中间体产生的,并且存在于体内的眼组织中23。由于谷胱甘肽的氧化可能是眼睛中H2O2产生部分原因,因此我们在研究中分析了GSH / 谷胱甘肽的水平,这与H2O2诱导的氧化应激和细胞的再生能力有关21,22。谷胱甘肽水平的分析特别相关,因为它参与眼睛的抗氧化保护机制24。暴露于H2O2经常被用作模型来检查RPE细胞1,25,26,27,28,29,30的氧化应激敏感性和抗氧化活性,此外,它显示出与光诱导的氧化应激损伤的相似性,氧化应激损伤是氧化应激21的”生理”来源。

为了评估神经保护因子的功能和有效性,我们开发了一种体外模型,该模型允许分析以量化由基因修饰以过度表达PEDF和GM-CSF的细胞表达的生长因子的抗氧化作用。在这里,我们表明,与PEDF和GM-CSF基因转染的RPE细胞比未转染的对照细胞更能抵抗H2O2的有害影响,如细胞形态学,密度,活力,谷胱甘肽的细胞内水平和UCP2基因的表达所证明的那样,UCP2基因编码线粒体解偶联蛋白2,已被证明可以减少活性氧(ROS)31。

Protocol

收集和使用人眼的程序由州伦理研究委员会批准(编号:2016-01726)。 1. 细胞分离和培养条件 人 ARPE-19 细胞系 在Dulbecco的改良鹰培养基/营养混合物F-12火腿(DMEM / Ham’s F-12)中培养5 x 105 个ARPE-19细胞,这是一种人RPE细胞系,在37°C下在T75烧瓶中加入10%胎牛血清(FBS),80 U / mL青霉素,80μg/ mL链霉素B(完整培养基)在5%CO2 和95%空气的加湿气氛中(其?…

Representative Results

诱导人视网膜色素上皮细胞中的氧化应激ARPE-19和原代hRPE细胞用不同浓度的H2O2处理24小时,并定量抗氧化剂谷胱甘肽的细胞内水平(图2A,B)。H2O2在50μM和100μM不影响谷胱甘肽的产生,而在350μM时,ARPE-19和原代hRPE细胞中的谷胱甘肽显着降低。细胞毒性分析表明,350μM是H2O2…

Discussion

这里提出的方案提供了一种分析转染细胞产生的PEDF和GM-CSF的抗氧化和保护功能的方法,可以应用于任何假定有益基因转染的细胞。在以通过移植转基因细胞将蛋白质递送到组织的基因治疗策略中,获得有关蛋白质表达水平,表达寿命以及表达蛋白质在疾病模型中的有效性的信息至关重要。在我们的实验室中,这里提出的方案可用于确定PEDF和GM-CSF对氧化应激的有效性,氧化应激已被假设为aAMD<sup cl…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者要感谢Gregg Sealy和Alain Conti的出色技术援助,以及柏林Max-Delbrück中心的Zsuzsanna Izsvák教授慷慨地提供了pSB100X和pT2-CAGGS-Venus质粒。这项工作得到了瑞士国家科学基金会和欧盟委员会在第七个框架方案的范围内的支持。Z.I由欧洲研究委员会ERC Advanced资助[ERC-2011-ADG 294742]。

Materials

24-well plates Corning 353047
6-well plates Greiner 7657160
96-well culture plate white with clear flat bottom  Costar 3610 Allows to check the cells before measuring the luminescence (GSH-Glo Assay)
96-well plates Corning  353072
Acrylamid 40% Biorad 161-0144
Amphotericin B AMIMED 4-05F00-H
Antibody anti-GMCSF ThermoFisher Scientific PA5-24184
Antibody anti-mouse IgG/IgA/IgM  Agilent P0260
Antibody anti-PEDF  Santa Cruz Biotechnology Inc sc-390172
Antibody anti-penta-His  Qiagen 34660
Antibody anti-phospho-Akt Cell Signaling Technology 9271
Antibody anti-rabbit IgG H&L-HRP Abcam ab6721
Antibody donkey anti-rabbit Alexa Fluor 594  ThermoFisher Scientific  A11034
Antibody goat anti-mouse Alexa 488 ThermoFisher Scientific A-11029
ARPE-19 cell line ATCC CRL-2302
BSA  Sigma-Aldrich A9418-500G
chamber culture glass slides Corning 354118
CytoTox-Glo Cytotoxicity Assay  Promega G9291
DAPI Sigma-Aldrich D9542-5MG
DMEM/Ham`s F12  Sigma-Aldrich D8062
Duo Set ELISA kit R&D Systems  DY215-05
EDTA ThermoFisher Scientific 78440
ELISAquant kit BioProducts MD PED613-10-Human
Eyes (human) Lions Gift of Sight Eye Bank (Saint Paul, MN)
FBS  Brunschwig P40-37500
Fluoromount Aqueous Mounting Medium Sigma-Aldrich F4680-25ML
FLUOstar Omega plate reader  BMG Labtech
GraphPad Prism software (version 8.0) GraphPad Software, Inc.
GSH-Glo Glutathione Assay Promega V6912
hydrogen peroxide (H2O2) Merck 107209
ImageJ software (image processing program) W.S. Rasband, NIH, Bethesda, MD, USA; https://imagej.nih.gov/ij/; 1997–2014
Imidazol  Axonlab A1378.0010
Leica DMI4000B microscope  Leica Microsystems
LightCycler 480 Instrument II  Roche Molecular Systems
LightCycler 480 SW1.5.1 software Roche Molecular Systems
NaCl Sigma-Aldrich 71376-1000
NaH2PO4 Axonlab 3468.1000
Neon Transfection System  ThermoFisher Scientific MPK5000
Neon Transfection System 10 µL Kit ThermoFisher Scientific MPK1096
Neubauer chamber Marienfeld-superior 640010
Ni-NTA superflow  Qiagen 30410
Nitrocellulose  VWR 732-3197
Omega Lum G Gel Imaging System Aplegen Life Science
PBS 1X Sigma-Aldrich D8537
Penicillin/Streptomycin Sigma-Aldrich P0781-100
PerfeCTa SYBR Green FastMix Quantabio 95072-012
PFA  Sigma-Aldrich 158127-100G
Pierce BCA Protein Assay Kit  ThermoFisher Scientific 23227
Primers  Invitrogen  See Table 1 in Supplementary Materials
pSB100X (250 ng/µL) Mátés et al., 2009. Provide by Prof. Zsuzsanna Izsvak
pT2-CMV-GMCSF-His plasmid DNA (250 ng/µL) Constructed using the existing pT2-CMV-PEDF-EGFP plasmid reported in Johnen, S. et al. (2012) IOVS, 53 (8), 4787-4796.
pT2-CMV-PEDF-His plasmid DNA (250 ng/µL) Constructed using the existing pT2-CMV-PEDF-EGFP plasmid reported in Johnen, S. et al. (2012) IOVS, 53 (8), 4787-4796.
QIAamp DNA Mini Kit QIAGEN 51304
recombinant hGM-CSF  Peprotech 100-11
recombinant hPEDF   BioProductsMD 004-096
ReliaPrep RNA Cell Miniprep System Promega Z6011
RIPA buffer ThermoFisher Scientific 89901
RNase-free DNase Set QIAGEN 79254
RNeasy Mini Kit QIAGEN 74204
SDS Applichem A2572
Semi-dry transfer system for WB  Bio-Rad
SuperMix qScript Quantabio 95048-025
Tris-buffered saline (TBS)  ThermoFisher Scientific 15504020
Triton X-100 AppliChem A4975
Trypsin/EDTA Sigma-Aldrich T4174
Tween AppliChem  A1390
Urea ThermoFisher Scientific 29700
WesternBright ECL HRP substrate Advansta K-12045-D50
Whatman nitrocellulose membrane Chemie Brunschwig MNSC04530301

Riferimenti

  1. Zareba, M., Raciti, M. W., Henry, M. M., Sarna, T., Burke, J. M. Oxidative stress in ARPE-19 cultures: Do melanosomes confer cytoprotection. Free Radical Biology and Medicine. 40 (1), 87-100 (2006).
  2. Gong, X., Draper, C. S., Allison, G. S., Marisiddaiah, R., Rubin, L. P. Effects of the macular carotenoid lutein in human retinal pigment epithelial cells. Antioxidants. 6 (4), (2017).
  3. Sacconi, R., Corbelli, E., Querques, L., Bandello, F., Querques, G. A Review of current and future management of geographic atrophy. Ophthalmology and Therapy. 6, 69-77 (2017).
  4. Al-Zamil, W. M., Yassin, S. A. Recent developments in age-related macular degeneration: a review. Clinical Interventions in Aging. 12, 1313-1330 (2017).
  5. Kumar-Singh, R. The role of complement membrane attack complex in dry and wet AMD – From hypothesis to clinical trials. Experimental Eye Research. 184, 266-277 (2019).
  6. Ung, L., Pattamatta, U., Carnt, N., Wilkinson-Berka, J. L., Liew, G., White, A. J. R. Oxidative stress and reactive oxygen species. Clinical Science. 131, 2865-2883 (2017).
  7. Beatty, S., Koh, H. H., Phil, M., Henson, D., Boulton, M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Survey of Ophthalmology. 45 (2), 115-134 (2000).
  8. Alhasani, R. H., et al. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food and Chemical Toxicology. 112, 76-85 (2018).
  9. . National Institute of Health Available from: https://nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/age-related-macular-degeneration-amd-data-and-statistics (2020)
  10. Mitchell, P., Liew, G., Gopinath, B., Wong, T. Y. Age-related macular degeneration. The Lancet. 392, 1147-1159 (2018).
  11. He, Y., Leung, K. W., Ren, Y., Jinzhi, P., Jian, G., Tombran-Tink, J. PEDF improves mitochondrial function in RPE cells during oxidative stress. Investigative Ophthalmology & Visual Science. 55, 6742-6755 (2014).
  12. Cao, S., Walker, G. B., Wang, X., Cui, J. Z., Matsubara, J. A. Altered cytokine profiles of human retinal pigment epithelium: Oxidant injury and replicative senescence. Molecular Vision. 19, 718-728 (2013).
  13. Farnoodian, M., Sorenson, C. M., Sheibani, N. PEDF expression affects the oxidative and inflammatory state of choroidal endothelial cells. Amercian Journal of Physiology and Cell Physiology. 314 (4), 456-472 (2018).
  14. Polato, F., Becerra, S. P. Retinal Degenerative Diseases: Mechanisms and Experimental Therapies. Retinal Degenerative Diseases. , 699-706 (2016).
  15. Schallenberg, M., Charalambous, P., Thanos, S. GM-CSF regulates the ERK1/2 pathways and protects injured retinal ganglion cells from induced death. Experimental Eye Research. 89, 665-677 (2009).
  16. Schallenberg, M., Charalambous, P., Thanos, S. GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Archives for Clinical and Experimental Ophthalmology. 250, 699-712 (2012).
  17. Thumann, G., et al. Engineering of PEDF-expressing primary pigment epithelial cells by the SB transposon system delivered by pFAR4 plasmids. Molecular Therapy – Nucleic Acids. 6, 302-314 (2017).
  18. Garcia-Garcia, L., et al. Long-term PEDF release in rat iris and retinal epithelial cells after Sleeping Beauty transposon-mediated gene delivery. Molecular Therapy – Nucleic Acids. 9, 1-11 (2017).
  19. Johnen, S., et al. Antiangiogenic and neurogenic activities of Sleeping Beauty-mediated PEDF-transfected RPE cells in vitro and in vivo. BioMed Research International. 2015, (2015).
  20. Weigel, A. L., Handa, J. T., Hjelmeland, M. L. Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radical Biology & Medicine. 33 (10), 1419-1432 (2002).
  21. Allen, R. G., Tresini, M. Oxidative stress and gene regulation. Free Radical Biology and Medicine. 28 (3), 463-499 (2000).
  22. Tate, D. J., Miceli, M. V., Newsome, D. A. Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Investigative Ophthalmology and Visual Science. 36 (7), 1271-1279 (1995).
  23. Halliwell, B., Clement, M. V., Long, L. H. Hydrogen peroxide in the human body. FEBS Letters. 486 (1), 10-13 (2000).
  24. Giblin, F. J., McCready, J. P., Kodama, T., Reddy, V. N. A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Experimental Eye Research. 38, 87-93 (1984).
  25. Geiger, R. C., Waters, C. M., Kamp, D. W., Glucksberg, M. R. KGF prevents oxygen-mediated damage in ARPE-19 cells. Investigative Ophthalmology and Visual Science. 46, 3435-3442 (2005).
  26. Campochiaro, P. A., et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Human Gene Therapy. 28, 99-111 (2017).
  27. Chen, X. -. D., Su, M. -. Y., Chen, T. -. T., Hong, H. -. Y., Han, A. -. D., Li, W. -. S. Oxidative stress affects retinal pigment epithelial cell survival through epidermal growth factor receptor/AKT signaling pathway. International Journal of Ophthalmology. 10 (4), 507-514 (2017).
  28. Tu, G., et al. Allicin attenuates H2O2 – induced cytotoxicity in retinal pigmented epithelial cells by regulating the levels of reactive oxygen species. Molecular Medicine Reports. 13, 2320-2326 (2016).
  29. Hao, Y., Liu, J., Wang, Z., Yu, L., Wang, J. Piceatannol protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis through modulating. Nutrients. 11, 1-13 (2019).
  30. Ballinger, S. W., Van Houten, B., Conklin, C. A., Jin, G. F., Godley, B. F. Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Experimental Eye Research. 68 (6), 765-772 (1999).
  31. Ma, S., et al. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. American Journal of Hypertension. 27 (3), 345-354 (2014).
  32. Johnen, S., et al. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Investigative Ophthalmology and Visual Science. 53 (8), 4787-4796 (2012).
  33. Mátés, L., et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics. 41 (6), 753-761 (2009).
  34. . Marienfeld Technical information Neubauer-improved Available from: https://www.marienfeld-superior.com/information-about-our-counting-chambers.html (2020)
  35. . Electron Microscopy Sciences. Neubauer Haemocytometry Available from: https://www.emsdiasum.com/microscopy/technical/datasheet/68052-14.aspx (2020)
  36. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2^(-ΔΔCT) method. Methods. 25 (4), 402-408 (2001).
  37. Bascuas, T., et al. Non-virally transfected primary human pigment epithelium cells overexpressing the oxidative stress reduction factors PEDF and GM-CSF to treat retinal neurodegeneration neurodegenerationl. Human Gene Therapy. 30 (11), (2019).
  38. Zhuge, C. C., et al. Fullerenol protects retinal pigment epithelial cells from oxidative stress-induced premature senescence via activating SIRT1. Investigative Ophthalmology & Visual Science. 55 (7), 4628-4638 (2014).
  39. Kaczara, P., Sarna, T., Burke, M. Dynamics of H2O2 Availability to ARPE-19 cultures in models of oxidative stress. Free Radical Biology and Medicine. 48 (8), 1068-1070 (2010).
  40. Gorrini, C., Harris, I. S., Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery. 12, 931-947 (2013).
  41. Wang, X., et al. PEDF protects human retinal pigment epithelial cells against oxidative stress via upregulation of UCP2 expression. Molecular Medicine Reports. 19 (1), 59-74 (2019).
  42. Donadelli, M., Dando, I., Fiorini, C., Palmieri, M. UCP2, a mitochondrial protein regulated at multiple levels. Cellular and Molecular Life Sciences. 71, 1171-1190 (2014).
check_url/it/61957?article_type=t

Play Video

Citazione di questo articolo
Bascuas, T., Kropp, M., Harmening, N., Asrih, M., Izsvák, Z., Thumann, G. Induction and Analysis of Oxidative Stress in Sleeping Beauty Transposon-Transfected Human Retinal Pigment Epithelial Cells. J. Vis. Exp. (166), e61957, doi:10.3791/61957 (2020).

View Video