Summary

一种从人类多能干细胞中生成肾类器官的简化方法

Published: April 13, 2021
doi:

Summary

在这里,我们描述了一种从人类多能干细胞(hPSCs)生成肾类器官的方案。该方案在两周内产生肾脏类器官。所得的类肾类器官可以在大型旋转瓶或多孔磁力搅拌板中培养,以进行平行的药物测试方法。

Abstract

由hPSCs产生的肾类器官提供了无限的肾组织来源。人肾类器官是研究肾脏疾病和损伤,开发基于细胞的疗法以及测试新疗法的宝贵工具。对于此类应用,需要大量均匀的类器官和高度可重复的测定。我们以之前发布的类肾类器官方案为基础,以改善类器官的整体健康状况。这种简单,强大的3D方案涉及在含有脂质,胰岛素 – 转铁蛋白 – 硒 – 乙醇胺补充剂和聚乙烯醇的最小组分培养基中形成均匀的胚体,使用GSK3抑制剂(CHIR99021)3天,然后在含有敲除血清置换(KOSR)的培养基中培养。此外,搅拌测定可以减少胚体的结块并保持均匀的大小,这对于减少类器官之间的变异性非常重要。总体而言,该协议为产生大量肾类器官提供了一种快速,高效且具有成本效益的方法。

Introduction

近年来,已经开发了许多将人类多能干细胞分化为肾类器官的方案12345。类肾类化合物为研究新的再生医学方法,模拟肾脏相关疾病,进行毒性研究和治疗药物开发提供了重要工具。尽管它们具有广泛的适用性,但肾脏类器官具有局限性,例如缺乏成熟,体外长期培养能力有限,以及缺乏在人肾中发现的几种细胞类型678。最近的工作重点是通过修改现有方案910,1112来提高类器官成熟水平延长培养期并扩大肾细胞群的复杂性。在我们已建立的方案513的当前迭代中,我们将方案第一阶段的培养基组分修改为补充胰岛素 – 转铁蛋白 – 硒 – 乙醇胺(ITSE),脂质,聚乙烯醇(E5-ILP)和CHIR99021的无血清基础培养基(图1)。这些变化提供了一种完全定义的、无血清的低蛋白培养基,其成分比我们以前的培养基组成513少,并且没有额外的生长因子。因此,与我们之前发布的版本相比,第一阶段培养基的制备劳动强度较低,并且可以减少批次之间的差异5。先前的研究表明,胰岛素和转铁蛋白在无血清培养1415中都很重要,然而,高水平的胰岛素可以抑制中胚层分化16。我们保持了原始方案中规定的低胰岛素水平,并在测定的第二阶段进一步降低了KOSR(含胰岛素)的水平。根据肾类器官形成的其他方案,较低水平的KOSR有利于维持肾组织增殖和分化之间的平衡17。此外,我们还降低了II期培养基13中的葡萄糖浓度。

我们的方法描述了一种用于肾类器官悬浮测定的设置,从原始出版物5,13中所述的初始〜60%融合hPSC 100mm培养板中产生多达约1000个类器官。该协议可以很容易地扩展到从多个100 mm或150 mm板开始,以进一步增加类器官的数量。

Protocol

所有使用hPSC的实验均按照机构指南进行,并在II类生物安全罩中进行,并配有适当的个人防护装备。除非另有说明,否则所有试剂均为细胞培养级。将所有培养物在37°C,5%CO2 空气气氛中孵育。在测定的所有阶段,可以收集胚体或肾类器官,并固定或准备用于分析。用于生成此数据的hPSC线已经过完全表征并已发布18。 1. 制备培养板 <p class="jove_content…

Representative Results

在我们方案的最新版本中,肾脏类器官分化是在定义的低蛋白培养基中启动的。该测定完全在悬浮液中进行,并依赖于hPSCs分化和组织启动微管生成的先天能力。来自100mm〜60%融合hPSC培养板的单次测定通常产生500-1,000个肾脏类器官,如我们之前的出版物5所示。由于产生如此大量的类器官,该方案非常适合化合物测试。我们通常使用6孔格式进行化合物测试,但是,该协议可以在?…

Discussion

先前的研究表明,初始方案步骤对于中间中胚层分化51920 至关重要,因此,在此阶段实施严格的培养基组成至关重要。从方案的第一阶段去除未定义的组分,例如血清,白蛋白,无蛋白杂交瘤培养基II,可能有助于提高测定21之间的一致分化效率。

肾细胞的代谢状态对其功能至关重要…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项研究由美国国立卫生研究院R01 DK069403,UC2 DK126122和P30-DK079307以及ASN肾脏研究基金会Ben J. Lipps研究奖学金计划资助。

Materials

2-Mercaptoethanol Thermo Fisher 21-985-023
Anti-adherence rinsing solution STEMCELL Technologies 7010
CHIR99021 STEMCELL Technologies 72054 10 mM stock in DMSO
Corning disposable spinner flasks Fisher Scientific 07-201-152
Corning Ultra-Low Attachment 6-well plates Fisher Scientific 07-200-601
Corning Slow-Speed Stirrers Fisher Scientific 11-495-03 Multi plate magnetic stirrer for spinner flask culture
Dispase STEMCELL Technologies 7923 Aliquot and freeze
DMEM, low glucose, pyruvate, no glutamine, no phenol red Thermo Fisher 11054020
DPBS 1x, no calcium, no magnesium Thermo Fisher 14-190-250
Egg / Oval Stirring Bars 2mag PI20106
Excelta General-Purpose Tweezers Fisher Scientific 17-456-103 Keep sterile in the cell culture hood
EZBio Single Use Media Bottle, 250mL Foxx Life Sciences 138-3211-FLS Used to make PVA 10%
Falcon Standard Tissue Culture Dishes (100 mm) Thermo Fisher 08-772E
Fisherbrand Sterile Aspirating Pipet 2mL Fisher Scientific 14-955-135
Fisherbrand  Cell Lifters – Cell lifter Fisher Scientific 08-100-240
Fisherbrand Multi Function 3D Rotators Fisher Scientific 88-861-047 Orbital shaker
Geltrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix Thermo Fisher A1413302 BME. Aliquot on ice and freeze. Another suitable matrix alternative is Matrigel or Cultrex.
Gentle Cell Dissociation Reagent STEMCELL Technologies 7174 GCDR
GlutaMAX Supplement Thermo Fisher 35-050-061 L-glutamine supplement.
HEPES (1M) Thermo Fisher 15-630-080
Insulin-Transferrin-Selenium-Ethanolamine Thermo Fisher 51-500-056 ITSE
KnockOut  Serum Replacement – Multi-Species Thermo Fisher A3181502 KOSR. Aliquot and freeze
Lipid Mixture 1, Chemically Defined Millipore-Sigma L0288-100ML
MEM Non-Essential Amino Acids Solution Thermo Fisher 11140-050
MilliporeSigma Stericup Quick Release-GP Sterile Vacuum Filtration System 500mL Fisher Scientific S2GPU05RE
MilliporeSigma  Stericup Quick Release-GP Sterile Vacuum Filtration System 250mL Fisher Scientific S2GPU02RE
MIXcontrol MTP / Variomag TELEcontrol MTP Control Unit 2mag VMF 90250 U
MIXdrive 6 MTP / Variomag TELEdrive 6 MTP Microplate Stirring Drive 2mag VMF 40600 6MSP
MP Biomedicals  7X Cleaning Solution Fisher Scientific MP0976670A4 Tissue culture suitable detergent. Make a 5% solution in water
mTeSR1 STEMCELL Technologies 85850 hPSC medium.TeSR-E8, NutriStem XF, and mTeSR Plus medium have also been tested and are suitable alternatives. 
Nunc 50 mL Conical, Sterile Centrifuge Tubes Fisher Scientific 12-565-270
Nunc 15mL Conical Sterile Centrifuge Tubes Fisher Scientific 12-565-268
Penicillin-Streptomycin Thermo Fisher 15-140-122 Aliquot and freeze
Plasmocin Invivogen ant-mpt Anti-mycoplasma reagent. Aliquot and freeze
pluriStrainer® 200 µm Fisher Scientific NC0776417 Cell strainer
pluriStrainer® 500 µm Fisher Scientific NC0822591 Cell strainer
Poly(vinyl alcohol) 87-90% hydrolyzed  (PVA) Millipore-Sigma P8136-250G 10% in DPBS stirring at 98 degrees C until disolves, make in 138-3211-FLS
ROCK inhibitor Y-27632 (ROCKi) STEMCELL Technologies 72304 10 mM stock in DPBS
Sterile Disposable Serological Pipets  – 10mL Fisher Scientific 13-678-11E
Sterile Disposable Serological Pipets – 25mL Fisher Scientific 13-678-11
Sterile Disposable Serological pipette – 5 mL Fisher Scientific 13-678-12D
TeSR-E5 STEMCELL Technologies 5916 Serum-free, low protein base medium for E5-ILP
Variomag distriBOX 2 Distributor 2mag VMF 90512 If you use more than one MIXdrive

Riferimenti

  1. Takasato, M., et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 526 (7574), 564-568 (2015).
  2. Freedman, B. S., et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications. 6, 8715 (2015).
  3. Morizane, R., et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology. 33 (11), 1193-1200 (2015).
  4. Taguchi, A., et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 14 (1), 53-67 (2013).
  5. Przepiorski, A., et al. A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Reports. 11 (2), 470-484 (2018).
  6. Freedman, B. S., et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communication. 6, 8715 (2015).
  7. Morizane, R., et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology. 33 (11), 1193-1200 (2015).
  8. Takasato, M., et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 526 (7574), 564-568 (2015).
  9. Taguchi, A., Nishinakamura, R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 21 (6), 730-746 (2017).
  10. Uchimura, K., Wu, H., Yoshimura, Y., Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Reports. 33 (11), 108514 (2020).
  11. Howden, S. E., Little, M. H. Generating kidney organoids from human pluripotent stem cells using defined conditions. Methods in Molecular Biology. 2155, 183-192 (2020).
  12. Tanigawa, S., et al. Activin is superior to BMP7 for efficient maintenance of human iPSC-derived nephron progenitors. Stem Cell Reports. 13 (2), 322-337 (2019).
  13. Sander, V., et al. Protocol for large-scale production of kidney organoids from human pluripotent stem cells. STAR Protocols. 1 (3), 100150 (2020).
  14. Ekblom, P., Thesleff, I., Miettinen, A., Saxen, L. Organogenesis in a defined medium supplemented with transferrin. Cell Differentiation. 10 (5), 281-288 (1981).
  15. Thesleff, I., Ekblom, P. Role of transferrin in branching morphogenesis, growth and differentiation of the embryonic kidney. Journal of Embryology and Experimental Morphology. 82, 147-161 (1984).
  16. Freund, C., et al. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells. 26 (3), 724-733 (2008).
  17. Nishikawa, M., et al. An optimal serum-free defined condition for in vitro culture of kidney organoids. Biochemistry and Biophysics Research Communication. 501 (4), 996-1002 (2018).
  18. Oh, J. K., et al. Derivation of induced pluripotent stem cell lines from New Zealand donors. Journal of the Royal Society of New Zealand. , 1-14 (2020).
  19. Takasato, M., et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nature Cell Biology. 16 (1), 118-126 (2013).
  20. Lam, A. Q., et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. Journal of American Society of Nephrology. 25 (6), 1211-1225 (2014).
  21. Bratt-Leal, A. M., Carpenedo, R. L., McDevitt, T. C. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnology Progress. 25 (1), 43-51 (2009).
  22. Imasawa, T., et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB Journal. 31 (1), 294-307 (2017).
  23. Kim, K. A., et al. High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment. Biological and Pharmaceutical Bulletin. 37 (7), 1248-1252 (2014).
  24. Piwkowska, A., Rogacka, D., Audzeyenka, I., Jankowski, M., Angielski, S. High glucose concentration affects the oxidant-antioxidant balance in cultured mouse podocytes. Journal of Cellular Biochemistry. 112 (6), 1661-1672 (2011).
  25. Wu, H., et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 23 (6), 869-881 (2018).
  26. Lei, X., Deng, Z., Duan, E. Uniform embryoid body production and enhanced mesendoderm differentiation with murine embryonic stem cells in a rotary suspension bioreactor. Methods in Molecular Biology. , (2016).
check_url/it/62452?article_type=t

Play Video

Citazione di questo articolo
Przepiorski, A., Crunk, A. E., Holm, T. M., Sander, V., Davidson, A. J., Hukriede, N. A. A Simplified Method for Generating Kidney Organoids from Human Pluripotent Stem Cells. J. Vis. Exp. (170), e62452, doi:10.3791/62452 (2021).

View Video