Summary

使用2',7'-二氯荧光素双乙酸探针和流式细胞术在穆勒神经胶质细胞中定量活性氧

Published: May 13, 2022
doi:

Summary

在这里,我们提出了一种系统化,可访问和可重复的方案,以使用Müller神经胶质细胞(MGCs)中的2’,7′-二氯荧光素二乙酸探针(DCFH-DA)检测细胞活性氧(ROS)。该方法用流式细胞仪量化总细胞ROS水平。该协议非常易于使用,适用且可重复。

Abstract

氧化还原平衡在维持细胞稳态方面具有重要作用。活性氧(ROS)的产生增加促进了蛋白质,脂质和DNA的修饰,最终可能导致细胞功能的改变和细胞死亡。因此,通过激活像Keap1 / Nrf2这样的抗氧化途径或通过改善氧化还原清除剂(维生素A,C和E,β胡萝卜素和多酚等)来增加其抗氧化防御能力对细胞的有害侮辱是有益的。炎症和氧化应激与视网膜病变的发病机制和进展有关,例如糖尿病视网膜病变(DR)和早产儿视网膜病变(ROP)。由于Müller神经胶质细胞(MGCs)在神经视网膜组织的稳态中起着关键作用,因此它们被认为是研究这些细胞保护机制的理想模型。从这个意义上说,用可重复和简单的方法量化ROS水平对于评估参与抗氧化细胞防御机制的途径或分子的贡献至关重要。在本文中,我们提供了使用DCFH-DA探针和MGC中的流式细胞术测量ROS所需的程序的完整描述。此处提供了使用该软件进行流式细胞术数据处理的关键步骤,因此读者将能够测量ROS水平(FITC的几何手段)并分析荧光直方图。这些工具不仅对评估细胞损伤后ROS的增加非常有帮助,而且对研究某些分子的抗氧化作用非常有帮助,这些分子可以对细胞提供保护作用。

Introduction

神经视网膜是一个非常有组织的组织,呈现出定义明确的神经元层。在这些中,神经元(神经节,腺素,双极,水平和光感受器细胞)彼此相互连接,并且还与Müller神经胶质细胞(MGCs)和星形胶质细胞相互连接,从而导致视觉信息的充分光转导和处理12。众所周知,MGCs在维持视网膜稳态方面具有重要作用,因为它们穿过整个视网膜部分,因此,它们可以与调节多个保护过程的所有细胞类型相互作用。据报道,MGCs具有维持和存活视网膜神经元的几个重要功能,包括糖酵解为神经元提供能量,去除神经元废物,回收神经递质以及释放神经营养因子等345

另一方面,炎症,氧化和亚硝化应激参与许多人类疾病的发病机制和进展,包括视网膜病变67891011细胞中的氧化还原平衡取决于ROS水平的严格调节。ROS主要是由于有氧呼吸而在生理条件下不断产生的。ROS家族的主要成员包括反应性自由基,如超氧阴离子(O2͘͘͘͘•−),羟基自由基(OH),各种过氧化物(ROOR′),氢过氧化物(ROOH)和无自由基过氧化氢(H2O21213。在过去的几年中,很明显,ROS通过控制基本过程在细胞中起着重要的信号作用。MGCs具有很强的抗氧化防御能力,通过激活转录核因子红系2相关因子2(Nrf2)和随后表达抗氧化蛋白以消除病理条件下ROS的过量产生141516。当细胞由于ROS的夸大产生或去除ROS的能力缺陷而失去氧化还原平衡时,氧化应激的积累会促进蛋白质,脂质和DNA的有害修饰,从而导致细胞应激或死亡。视网膜抗氧化防御系统的增加改善了视网膜病变的消退和预防,例如ROP和RD1718192021222324。因此,实时测量ROS产量是一个强大而有用的工具。

有几种方法可以测量细胞中的ROS产生或氧化应激。其中,2’,7′-二氯荧光素二乙酸酯(DCFH-DA)探针是直接量化细胞25,262728氧化还原状态的最广泛使用的技术之一。该探针是亲脂性的和非荧光的。该探针在细胞膜上的扩散允许其通过细胞内酯酶在两个酯键处裂解,产生相对极性和细胞膜不渗透的产物2’,7′-二氯荧光素(H2DCF)。这种非荧光分子在细胞内积聚,随后通过ROS氧化产生高荧光产物DCF。探针的氧化是多种类型的ROS(过氧亚硝酸盐,羟基自由基,一氧化氮或过氧化物)作用的产物,可以通过流式细胞术或共聚焦显微镜(在530nm处发射并在485nm处激发)来检测。该技术的局限性在于超氧化物和过氧化氢不与H 2 DCF2529发生强烈反应。在本文中,我们使用DCFH-DA探针通过流式细胞术测量和量化ROS。出于这个原因,我们通过用ROS诱导剂A或B刺激MGCs来诱导ROS的产生,然后再用荧光探针加载细胞。此外,我们使用抗氧化化合物。最后,我们展示了使用该协议获得的具有代表性和可靠的数据。

Protocol

注:有关缓冲液成分,请参见 表1。 1. 细胞培养制备 注意:这里描述的是MIO-M1细胞的培养制备,MIO-M1细胞是一种自发永生的人Müller神经胶质细胞系(Moorfield’s/Institute of Ophthalmology-Müller 1)。始终使用适当的无菌技术,并在层流罩中工作。 准备Dulbecco的改良鹰培养基(DMEM)完整培养基。对于含有 4.5 g/L D-葡萄糖和 110 mg/L 丙…

Representative Results

如方案部分所述,我们已经展示了具有代表性和定量的数据,这些数据证明了流式细胞术检测荧光探针DCFH-DA从用ROS诱导剂A或B刺激的MIO-M1细胞中产生ROS。正如预期的那样,我们观察到未受刺激细胞中FITC荧光的变化高于自发荧光水平(图1A,比较“基础对照”与“自发荧光对照”,点图)。这是由于MIO-M1细胞中ROS的基础产生而发生的。(图1B,比较“基?…

Discussion

几种病理状况,如癌症,炎症性疾病,缺血/再灌注,缺血性心脏病,糖尿病和视网膜病变,以及衰老等生理状况,导致ROS生产过剩67891011。因此,检测、测量和了解ROS调节所涉及的途径是许多疾病的重要靶点。使用探针测量ROS水平,如DCF…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

作者要感谢CIBIICI(CENTRE de Investigaciones en Bioquímica Clínica e Inmunología,CONICET-UNC,阿根廷科尔多瓦)的María Pilar Crespo和Paula Alejandra Abadie,以及Gabriela Furlan和Noelia Maldonado的细胞培养协助。我们还感谢Victor Diaz(FCQ机构传播副部长)的视频制作和编辑。

本文由2018-2021年科尔多瓦国立科学与技术大学(SECyT-UNC)Consolidar,科学与技术研究基金会(FONCyT)和科学与技术研究中心(PICT)2015 N° 1314(全部至M.C.S.)资助。

Materials

2′,7′-DCFH-DA Sigma 35845-1G
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Gibco by life technologies 15630-080
BD FACSCanto II flow cytometer BD Biosciences FACSCanto
BD FACSDiva software BD Biosciences
Cell Culture Dishes 100×20 mm Cell Star- Greiner Bio-One 664 160
Centrifuge Thermo Sorvall legend micro 17 R
Centrifuge Tubes (15 ml) BIOFIL CFT011150
Centrifuge Tubes (50 ml) BIOFIL CFT011500
Cryovial CRYO.S – Greiner Bio-One 126263
Dimethyl Sulfoxide Sigma-Aldrich W387520-1KG
Disodium-hydrogen-phosphate heptahydrate Merck 106575
DMEM without phenol red Gibco by life technologies 31053-028
Dulbecco’s modified Eagle’s medium (DMEM) Gibco by life technologies 11995065
Ethylenediamine Tetraacetic Acid (EDTA), Disodium Salt, Dihydrate Merck 324503
Fetal Bovine Serum Internegocios
FlowJo v10 Software BD Biosciences
Glucose Merck 108337
hemocytometer, Neubauer chamber BOECO,Germany
Laminar flow hood ESCO AC2-6E8
L-glutamine (GlutaMAX) Gibco by life technologies A12860-01
MitoSOX Red Invitrogen  M36008
Penicillin/Streptomycin Gibco by life technologies 15140-122
Potassium Chloride Merck 104936
Potassium-dihydrogen phosphate Merck 4878
Round polystyrene tubes 5 ml (flow cytometry tubes) Falcon – Corning BD-352008
Sodium Azide Merck 822335
Sodium Chloride Merck 106404
Sodium Hydroxide Merck 106462
SPINWIN Micro Centrifuge Tube 1.5 ml Tarson 500010-N
Tissue Culture Plate 6 well BIOFIL TCP011006
Trypan Blue Merck 111732
Trypsin-EDTA 0.5% 10X Gibco by life technologies 15400-054
Vortex Mixer Labnet International, Inc.

Riferimenti

  1. Hoon, M., Okawa, H., Della Santina, L., Wong, R. O. L. Functional architecture of the retina: Development and disease. Progress in Retinal and Eye Research. 42, 44-84 (2014).
  2. Cowan, C. S., et al. Cell types of the human retina and its organoids at single-cell resolution. Cell. 182 (6), 1623-1640 (2020).
  3. Subirada, P. V., et al. A journey into the retina: Müller glia commanding survival and death. European Journal of Neuroscience. 47 (12), 1429-1443 (2018).
  4. Coughlin, B. A., Feenstra, D. J., Mohr, S. Müller cells and diabetic retinopathy. Vision Research. 139, 93-100 (2017).
  5. Goldman, D. Müller glial cell reprogramming and retina regeneration. Nature Reviews Neurosciences. 15 (7), 431-442 (2014).
  6. Kamalden, T. A., et al. Exosomal microRNA-15a transfer from the pancreas augments diabetic complications by inducing oxidative stress. Antioxidation Redox Signaling. 27 (13), 913-930 (2017).
  7. Feng, Y., et al. Transcription of inflammatory cytokine TNFα is upregulated in retinal angiogenesis under hyperoxia. Cell Physiology and Biochemistry. 39 (2), 573-583 (2016).
  8. Rojas, M., et al. NOX2-induced activation of arginase and diabetes-induced retinal endothelial cell senescence. Antioxidants. 6 (2), 43 (2017).
  9. Sennlaub, F., Courtois, Y., Goureau, O. Inducible nitric oxide synthase mediates retinal apoptosis in ischemic proliferative retinopathy. Journal of Neuroscience. 22 (10), 3987-3993 (2002).
  10. Wilkinson-Berka, J. L., et al. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxidation and Redox Signaling. 20 (17), 2726-2740 (2014).
  11. Wang, H., Zhang, S. X., Hartnett, M. E. Signaling pathways triggered by oxidative stress that mediate features of severe retinopathy of prematurity. JAMA Ophthalmology. 131 (1), 80-85 (2013).
  12. Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 4, 180-183 (2015).
  13. Zorov, D. B., Juhaszova, M., Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews. 94 (3), 909-950 (2014).
  14. Navneet, S., et al. Excess homocysteine upregulates the NRF2-antioxidant pathway in retinal Müller glial cells. Experiments in Eye Research. 178, 228-237 (2019).
  15. Navneet, S., et al. Hyperhomocysteinemia-induced death of retinal ganglion cells: The role of Müller glial cells and NRF2. Redox Biology. 24, 101199 (2019).
  16. Wang, J., et al. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger. Free Radical Biology and Medicine. 86, 25-36 (2015).
  17. Nakamura, S., et al. Nrf2 activator RS9 suppresses pathological ocular angiogenesis and hyperpermeability. Investigative Ophthalmology and Visual Science. 60 (6), 1943-1952 (2019).
  18. Xu, Z., et al. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia. 57 (1), 204-213 (2014).
  19. Chen, W. J., et al. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light. Experiments in Eye Research. 154, 151-158 (2017).
  20. Wei, Y., et al. Nrf2 in ischemic neurons promotes retinal vascular regeneration through regulation of semaphorin 6A. Proceedings of the National Academy of Science of the United States of America. 112 (50), 6927-6936 (2015).
  21. Wei, Y., et al. Nrf2 has a protective role against neuronal and capillary degeneration in retinal ischemia-reperfusion injury. Free Radical Biology and Medicine. 51 (1), 216-224 (2011).
  22. Wei, Y., et al. Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proceedings of the National Academy of Science of the United States of America. 110 (41), 3910-3918 (2013).
  23. Wei, Y., Gong, J., Xu, Z., Duh, E. J. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy. Free Radical Biology and Medicine. 99, 234-243 (2016).
  24. Xu, Z., et al. Neuroprotective role of Nrf2 for retinal ganglion cells in ischemia-reperfusion. Journal of Neurochemistry. 133 (2), 233-241 (2015).
  25. Armstrong, D. Advanced protocols in oxidative stress III. Methods in Molecular Biology. 1208, (2015).
  26. Shehat, M. G., Tigno-Aranjuez, J. Flow cytometric measurement of ROS production in macrophages in response to FcγR cross-linking. Journal of Visualized Experiments. (145), e59167 (2019).
  27. Wu, D., Yotnda, P. Production and detection of reactive oxygen species (ROS) in cancers. Journal of Visualized Experiments. (57), e3357 (2011).
  28. Halliwell, B., Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean. British Journal of Pharmacology. 142 (2), 231-255 (2004).
  29. Kalyanaraman, B., et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine. 52 (1), 1-6 (2012).
  30. Fernandes, D. C. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. American Journal of Physiology and Cell Physiology. 292 (1), 413-422 (2007).
  31. Zielonka, J., Kalyanaraman, B. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radical Biology and Medicine. 48 (8), 983-1001 (2010).
  32. Roelofs, B. A., Ge, S. X., Studlack, P. E., Polster, B. M. Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radical Biology and Medicine. 86, 250-258 (2015).
check_url/it/63337?article_type=t

Play Video

Citazione di questo articolo
Vaglienti, M. V., Subirada, P. V., Barcelona, P. F., Bonacci, G., Sanchez, M. C. Quantification of Reactive Oxygen Species Using 2′,7′-Dichlorofluorescein Diacetate Probe and Flow-Cytometry in Müller Glial Cells. J. Vis. Exp. (183), e63337, doi:10.3791/63337 (2022).

View Video