Summary

虚拟现实环境中人类观察者的受控旋转

Published: April 21, 2022
doi:

Summary

人类观察者的受控物理旋转对于某些实验,娱乐和教育应用是可取的。本文概述了将办公室转椅转换为在虚拟现实环境中进行受控物理旋转的介质的方法。

Abstract

虚拟现实(VR)系统的低成本和可用性支持了最近在更自然,多感官和沉浸式条件下对感知和行为的研究的加速。使用VR系统特别受益的一个研究领域是多感官整合,例如,视觉和前庭线索的整合,以产生自我运动感。因此,在虚拟环境中控制观察者物理旋转的可访问方法代表了一项有用的创新。本文介绍了一种自动旋转办公室转椅的方法,以及一种将该运动集成到VR体验中的方法。使用示例实验来证明,由此产生的物理运动以符合期望的方式与观察者的视觉体验相结合;当运动与视觉刺激一致时,积分高;当运动不协调时,积分低。

Introduction

许多线索在自然条件下结合在一起,产生自我运动的感觉1。在许多娱乐、健康和教育 VR 应用中,产生这种感觉是一个目标2345,简单地理解线索如何组合在一起以提供自我运动感一直是神经科学家的长期努力67891011.自我运动感知的三类最重要的线索是视觉,前庭和本体感觉1。在现实世界的自然运动过程中,这三者一致地结合在一起,以提供强大而丰富的自我运动感。为了理解每类线索的作用并了解线索如何组合,研究人员传统上剥夺了实验观察者一个或多个线索和/或将线索相互冲突的线索112。例如,为了在没有本体感觉线索的情况下提供旋转前庭线索,观察者可以由电动椅子13,141516被动地旋转。这种被动运动已被证明可以为自运动17提供非常有说服力的线索。VR头显提供的受控视觉提示可能与椅子运动一致或不一致,或者完全不存在。本体感觉提示可以通过让观察者在自己的力量下旋转椅子来添加,例如,通过用脚推椅子。

这里介绍的是一种将办公室转椅转换为媒体的方法,用于物理旋转观察者的身体,并将该运动集成到视觉(和潜在的听觉)虚拟体验中。椅子的旋转可以在观察者,计算机程序或其他人(如实验者)的控制下进行。观察者控制的旋转可以是被动的,方法是使电机驱动的旋转成为观察者手持控制器位置的函数,也可以通过关闭椅子并让观察者自己旋转椅子来主动。

还介绍了该椅子/ VR系统的心理物理应用程序。此示例应用程序强调了观察者受控被动旋转在理解自运动线索如何相互作用以产生整体感知体验方面的有用性。具体目标是深入了解长期研究的视觉错觉诱导的运动1819。在诱导运动中,静止或移动的目标在感知上被“击退”,远离移动的背景。例如,如果一个红色的目标点相对于向右移动的蓝点字段垂直向上移动,则目标点将出现向上移动,正如预期的那样,但也向左移动,远离移动背景2021的方向。目的是测试斥力是否是将背景运动解释为由自运动2223引起的结果。

如果是这种情况,那么添加与背景视觉运动一致的物理旋转应该会导致更强的感觉,即背景运动是由于在静止环境中的自旋转引起的。反过来,这应该导致更大的趋势,即从目标运动中减去背景运动,以获得相对于静止世界23的目标运动。这种增加的减法趋势将导致更大的目标排斥。添加了与背景运动一致或不一致的物理自旋转来测试这一点。这里介绍的系统允许精确控制物理运动和相应的视觉运动来验证这一假设。在此示例中,椅子运动由观察者使用VR系统的手持控制器直接控制。

尽管在文献24,25,26272829中有许多用于各种VR应用的电动旋转椅的例子,但作者没有意识到制作这种椅子并将其集成到交互式VR体验中的一套简洁的说明。SwiVRChair29可用的指令有限,其结构与此处介绍的说明相似,但设计时考虑到了不同的目的,即由计算机程序驱动以改善VR环境中的沉浸感,用户可以通过将脚放在地面上来覆盖椅子的移动。鉴于市售椅子的费用为3031,对于一些研究人员来说,制作一把“内部”椅子可能是一个更可行的选择。对于处于这种情况的人,下面的协议应该是有用的。

系统概述
该协议包括将办公椅转换为电动旋转椅并将椅子运动集成到VR体验中的指令。整个系统一旦完成,就由四部分组成:机械、电气、软件和VR子系统。整个系统的照片如图 1所示。所示的系统是示例实验中使用的系统。

机械子系统的工作是通过电机物理旋转转椅的上轴。它由一把办公椅组成,上面连接着两件东西:固定在办公椅上旋转轴上的滑轮和连接到轴下部固定部分的可调节安装框架。安装座上装有电动步进电机,其轴上有一个皮带轮,该皮带轮与办公椅上部轴上的皮带轮对齐。皮带将电机皮带轮连接到椅子滑轮上,使电机旋转椅子。

电气子系统为电机提供电力,并允许对电机进行电子控制。它由一个电机驱动器,一个电机电源,一个用于将驱动器与计算机连接在一起的Arduino板以及一个用于Arduino的电源(可选)组成。Arduino板是任何电子产品的业余爱好者和专业制造商中流行的小板,它包含可编程微处理器,控制器,输入和输出引脚以及(在某些型号中)USB端口(此处需要)。所有电气元件都装在定制改良的电绝缘盒中。由于为电机供电的变压器和(可选的)Arduino电源需要主电源,并且由于电机需要高工作电压,因此除低压电子工作(协议步骤2.5至2.10)之外的所有工作都应由合格的个人执行。

软件子系统包括用于对Arduino进行编程的Arduino软件,用于创建VR环境的Unity软件,用于驱动VR系统的Steam软件以及Ardity(允许Unity与Arduino板进行通信的Unity插件)。该软件安装在运行Microsoft Windows 10 Enterprise的Gygabyte Sabre 15WV8笔记本电脑上,用于示例实验(图1)。

VR系统由头戴式显示器(HMD),手持控制器和基站组成,用于确定HMD和控制器在空间中的位置和方向。该项目使用的VR系统是HTC Vive Pro(图1)。

下面描述的是组合这些组件以实现虚拟体验的过程,该体验结合了物理旋转(实验或其他方式),椅子运动由观察者通过手持控制器控制,或由主机/实验者通过计算机鼠标或电位计控制。协议的最后一部分包括启动VR体验所需的步骤。请注意,编码Unity以允许试验和数据收集的方法超出了本文的范围。有些步骤,特别是对于机械子系统,需要一定的车间设备和一定的技能水平。原则上,可以调整所介绍的方法以适应这些资源的可用性。为一些技术性更强的步骤提供了替代方案。

Protocol

警告:电气工作应由合格的人员执行。 1. 机械系统设置程序 将主滑轮连接到转椅的上轴上。 卸下上轴。注意:这通常涉及将椅子放在其侧面,并卸下椅子底部的销钉,以防止上轴滑出下轴。 将皮带轮摩擦贴合到轴上。 使用游标卡钳获取轴的直径。使用车床镗入滑轮孔以匹配轴的直径。 为螺钉创建螺纹孔,将皮带轮固定?…

Representative Results

示例实验的目的是确定物理旋转的添加 ( 与场景中的视觉背景运动一致或不一致 – 是否影响该场景中移动目标的感知方向。基于背景运动影响感知目标方向的假设,即根据参与者的视觉系统将背景运动的原因分配给自我运动的容易程度,预计同余和不一致的物理运动之间的差异32,33。如果背景和物理运动是一致的,那么预计会有更大的因果联系感,?…

Discussion

本文介绍了一种在观察者或实验者控制下将自动旋转添加到办公椅上的方法,以及一种将该运动集成到虚拟体验中的随附方法。关键步骤包括将电机机械连接到椅子上,设置电机的电源和电气控制,然后配置Arduino和计算机来驱动电机控制器。机械连接步骤需要一些专门的设备和技能,尽管已经为最困难的任务提出了解决方法。根据硬件的可用性,可能需要进一步的修改。

高?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了澳大利亚研究委员会DP160104211,DP190103474和DP190103103的支持。

Materials

48 V DC power supply (motor) Meanwell RSP-320-48 https://www.meanwellaustralia.com.au/products/rsp-320
5 V DC power supply (arduino) Jaycar MP3295 https://www.jaycar.com.au/15w-5v-3a-enclosed-power-supply/p/MP3295?pos=5&queryId=dda344422ab16c6
7f558551ac0acbd40
Ardity plugin for Unity Open Source https://ardity.dwilches.com/
Arduino MEGA 2560 Jaycar XC4420 https://www.jaycar.com.au/duinotech-mega-2560-r3-board-for-arduino/p/XC4420?pos=2&queryId=901771805f4bf6e0
ec31d41601d14dc3
Arduino software Arduino https://www.arduino.cc/en/software
Belt Motion Dynamics RFTB10010 Choose a size that suits the application. We used 60 tooth. https://www.motiondynamics.com.au/polyurethane-timing-belts-16mm-t-10/
Bracket bolts (holding motor) The Fastner Factory 161260 x 4. https://www.thefastenerfactory.com.au/bolts-and-nuts/all-stainless-bolts/stainless-button-socket-head-cap-screws/stainless-steel-button-socket-head-cap-screw-m6-x-35mm-100pc
Bracket bolts (not holding motor) The Fastner Factory 161258 x 4. https://www.thefastenerfactory.com.au/bolts-and-nuts/all-stainless-bolts/stainless-button-socket-head-cap-screws/stainless-steel-button-socket-head-cap-screw-m6-x-25mm-100pc
Clamp Angle Iron Austral Wright Metals 50004813 x 2. https://www.australwright.com.au/products/stainless-steel/stainless-steel-bar-round-flat-angle-square/
Clamp bolts The Fastner Factory 161265 x 4. https://www.thefastenerfactory.com.au/bolts-and-nuts/all-stainless-bolts/stainless-button-socket-head-cap-screws/stainless-steel-button-socket-head-cap-screw-m6-x-70mm-100pc  
Clamp leaves (stainless flat bar) Austral Wright Metals 50004687 x 8. https://www.australwright.com.au/products/stainless-steel/stainless-steel-bar-round-flat-angle-square/
Cover (acrylic) Bunnings Warehouse 1010489 https://www.bunnings.com.au/suntuf-900-x-600-x-5mm-grey-acrylic-sheet_p1010489
Cover bolts/nuts Bunnings Warehouse 247292 x 4. https://www.bunnings.com.au/pinnacle-m3-x-16mm-stainless-steel-hex-head-bolts-and-nuts-12-pack_p0247292
Cover brackets Bunnings Warehouse 44061 x 4. https://www.bunnings.com.au/zenith-20mm-zinc-plated-angle-bracket-16-pack_p0044061
Emergency shut-off switch Jaycar SP0786 https://www.jaycar.com.au/latching-emergency-stop-switch/p/SP0786?pos=1&queryId=5abe9876cf78dc3d
d26b9067fbc36f74
Hybrid stepper motor and driver Vevor ? Closed Loop Stepper Motor Nema 34 12NM Servo Motor Hybrid Driver https://vevor.com.au/products/1712oz-in-nema34-closed-loop-stepper-motor-12nm-hybrid-servo-driver-hsc86-kit?variant=33058303311975
IEC mains power connector RS components 811-7213 https://au.rs-online.com/web/p/iec-connectors/8117213
Instrument case (housing) Jaycar HB6381 https://www.jaycar.com.au/abs-instrument-case-with-purge-valve-mpv2/p/HB6381
LED Jaycar ZD0205 https://www.jaycar.com.au/green-10mm-led-100mcd-round-diffused/p/ZD0205?pos=11&queryId=e596cbd3d71e86
37ab9340cee51175e7&sort=
relevance
Main pulley (chair) Motion Dynamics ALTP10020 Choose a size that suits the application. More teeth = slower rotation. We used 36 tooth. https://www.motiondynamics.com.au/timing-pulleys-t10-16mm.html
Motor attachment bars (Stainless flat bar) Austral Wright Metals 50004687 x 4. https://www.australwright.com.au/products/stainless-steel/stainless-steel-bar-round-flat-angle-square/
Mounting brackets (stainless flat bar) Austral Wright Metals 50004687 x 2. https://www.australwright.com.au/products/stainless-steel/stainless-steel-bar-round-flat-angle-square/
Nuts The Fastner Factory 161989 x 12. https://www.thefastenerfactory.com.au/stainless-steel-hex-nylon-insert-lock-nut-m6-100pc
On/off switch Jaycar SK0982 https://www.jaycar.com.au/dpdt-illuminated-rocker-large-red/p/SK0982?pos=4&queryId=88e0c5abfa682b74
fa631c6d513abc73&sort=relevance
Potentiometer Jaycar RP8610 https://www.jaycar.com.au/10k-ohm-logarithmic-a-single-gang-9mm-potentiometer/p/RP8610?pos=4&queryId=0d1510281ba100d
174b8e3d7f806a020
Pulley screws The Fastner Factory 155856 x 5. https://www.thefastenerfactory.com.au/stainless-steel-hex-socket-head-cap-screw-m4-x-25mm-100pc
resistor 150 Ohm Jaycar RR2554 https://www.jaycar.com.au/150-ohm-1-watt-carbon-film-resistors-pack-of-2/p/RR2554?pos=19&queryId=48c6317c73fd361
a42c835398d282c4a&sort=
relevance
Small pulley (motor) Motion Dynamics ALTP10020 Choose a size that suits the application. More teeth = faster rotation. We used 24 tooth. https://www.motiondynamics.com.au/timing-pulleys-t10-16mm.html
Small toggle switch Jaycar ST0555 https://www.jaycar.com.au/sealed-mini-toggle-switch/p/ST0555?pos=14&queryId=066b989a151d83
31885c6cec92fba517&sort=
relevance
Steam software Valve Corporation https://store.steampowered.com/
SteamVR plugin for Steam Valve Corporation https://store.steampowered.com/app/250820/SteamVR/
Unity software Unity Technologies https://unity3d.com/get-unity/download
VR system Scorptec 99HANW007-00 HTC Vive Pro with controllers and base stations. https://www.scorptec.com.au/product/gaming-peripherals/vr/72064-99hanw007-00?gclid=Cj0KCQiA5OuNBhCRARIsA
CgaiqX8NjXZ9F6ilIpVmYEhhanm
GA67xLzllk5EmjuG0gnhu4xmiE
_RwSgaAhn8EALw_wcB

Riferimenti

  1. Campos, J., Bülthoff, H., Murray, M. M., Wallace, M. T. Multimodal integration during self-motion in virtual reality. The Neural Bases of Multisensory. , (2012).
  2. Radianti, J., Majchrzak, T. A., Fromm, J., Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & Education. 147, 103778 (2020).
  3. Madshaven, J. M. Investigating the user experience of virtual reality rehabilitation solution for biomechatronics laboratory and home environment. Frontiers in Virtual Reality. 2, 645042 (2021).
  4. Fan, Z. Design of physical training motion simulation system based on virtual reality technology. 2021 The 13th International Conference on Computer Modeling and Simulation. Association for Computing Machinery. , 81-86 (2021).
  5. Roettl, J., Terlutter, R. The same video game in 2D, 3D or virtual reality – How does technology impact game evaluation and brand placements. PLoS One. 13 (7), 0200724 (2018).
  6. Riecke, B. E., Sigurdarson, S., Milne, A. P. Moving through virtual reality without moving. Cognitive Processing. 13, 293-297 (2012).
  7. Fauville, G., Queiroz, A. C. M., Woolsey, E. S., Kelly, J. W., Bailenson, J. N. The effect of water immersion on vection in virtual reality. Scientific Reports. 11 (1), 1022 (2021).
  8. Bernhard, E. R., Jörg, S. -. P., Marios, N. A., Markus Von Der, H., Heinrich, H. B. Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception. 3 (3), 194-216 (2006).
  9. Gibson, J. J. . The perception of the visual world. , (1950).
  10. Angelaki, D. E., Gu, Y., Deangelis, G. C. Visual and vestibular cue integration for heading perception in extrastriate visual cortex. Journal of Physiology. 589, 825-833 (2011).
  11. Badcock, D., Palmisano, S., May, J. G., Hale, K. S., Stanney, K. M. Vision and virtual environments. Handbook of Virtual Environments: Design, Implementation, and Applications. , 39-85 (2014).
  12. Kaliuzhna, M., Prsa, M., Gale, S., Lee, S. J., Blanke, O. Learning to integrate contradictory multisensory self-motion cue pairings. Journal of Vision. 15 (1), (2015).
  13. Wilkie, R. M., Wann, J. P. The role of visual and nonvisual information in the control of locomotion. Journal of Experimental Psychology: Human Perception and Performance. 31 (5), 901-911 (2005).
  14. Sinha, N., et al. Perception of self motion during and after passive rotation of the body around an earth-vertical axis. Progress in Brain Research. 171, 277-281 (2008).
  15. Tremblay, L., et al. Biases in the perception of self-motion during whole-body acceleration and deceleration. Frontiers in Integrative Neuroscience. 7, 90 (2013).
  16. Nooij, S. A. E., Bockisch, C. J., Bülthoff, H. H., Straumann, D. Beyond sensory conflict: The role of beliefs and perception in motion sickness. PLoS One. 16 (1), 0245295 (2021).
  17. Harris, L., et al. Simulating self-motion I: Cues for the perception of motion. Virtual Reality. 6 (2), 75-85 (2002).
  18. Carr, H. A., Hardy, M. C. Some factors in the perception of relative motion: A preliminary experiment. Psychological Review. 27, 24-37 (1920).
  19. Reinhardt-Rutland, A. H. Induced movement in the visual modality: An overview. Psychological Bulletin. 103, 57-71 (1988).
  20. Zivotofsky, A. Z., et al. Tracking of illusory target motion: Differences between gaze and head responses. Vision Research. 35 (21), 3029-3035 (1995).
  21. Farrell-Whelan, M., Wenderoth, P., Wiese, M. Studies of the angular function of a Duncker-type induced motion illusion. Perception. 41 (6), 733-746 (2012).
  22. Warren, P. A., Rushton, S. K. Optic flow processing for the assessment of object movement during ego movement. Current Biology. 19 (18), 1555-1560 (2009).
  23. Fajen, B. R., Matthis, J. S. Visual and non-visual contributions to the perception of object motion during self-motion. PLoS One. 8 (2), 55446 (2013).
  24. Duminduwardena, U. C., Cohen, M. Controlling the Schaire Internet Chair with a mobile device. Proceedings CIT: The Fourth International Conference on Computer and Information Technology. , 215-220 (2004).
  25. Ashiri, M., Lithgow, B., Mansouri, B., Moussavi, Z. Comparison between vestibular responses to a physical and virtual reality rotating chair. Proceedings of the 11th Augmented Human International Conference. , (2020).
  26. Koenig, E. A new multiaxis rotating chair for oculomotor and vestibular function testing in humans. Neuro-ophthalmology. 16 (3), 157-162 (1996).
  27. Mowrey, D., Clayson, D. Motion sickness, ginger, and psychophysics. The Lancet. 319 (8273), 655-657 (1982).
  28. Sanmugananthan, P., Nguyen, N., Murphy, B., Hossieni, A. Design and development of a rotating chair to measure the cervico-ocular reflex. Cureus. 13 (10), 19099 (2021).
  29. Gugenheimer, J., Wolf, D., Haas, G., Krebs, S., Rukzio, E. SwiVRChair: a motorized swivel chair to nudge users’ orientation for 360 degree storytelling in virtual reality. 1996-2000. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. , (2016).
  30. . Roto VR Chair Available from: https://www.rotovr.com/ (2021)
  31. . Yaw Motion Simulator Available from: https://www.yawvr.com/ (2021)
  32. Warren, P. A., Rushton, S. K. Perception of object trajectory: Parsing retinal motion into self and object movement components. Journal of Vision. 7 (11), 1-21 (2007).
  33. Bonnen, K., Burge, J., Yates, J., Pillow, J., Cormack, L. K. Continuous psychophysics: Target-tracking to measure visual sensitivity. Journal of Visualized Experiments: JoVE. (3), (2015).
  34. . SimXperience Available from: https://www.simxperience.com/ (2021)
  35. Harris, L. R., Jenkin, M., Zikovitz, D. C. Visual and non-visual cues in the perception of linear self-motion. Experimental Brain Research. 135, 12-21 (2000).
  36. . DOF Reality Motion Simulators Available from: https://www.dofreality.com/ (2021)
  37. . Next Level Racing Available from: https://nextlevelracing.com/ (2022)
  38. . Motion Systems Available from: https://motionsystems.eu/ (2022)
  39. . Redbird Flight Simulations Available from: https://simulators.redbirdflight.com/ (2022)
  40. Teufel, H. J., et al. MPI motion simulator: development and analysis of a novel motion simulator. Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit (AIAA 2007). , (2007).
check_url/it/63699?article_type=t

Play Video

Citazione di questo articolo
Falconbridge, M., Falconbridge, P., Badcock, D. R. Controlled Rotation of Human Observers in a Virtual Reality Environment. J. Vis. Exp. (182), e63699, doi:10.3791/63699 (2022).

View Video