Summary

在大鼠模型中通过结扎和脂多糖注射的组合 诱导 牙周炎

Published: February 17, 2023
doi:

Summary

在这项研究中,通过保留结扎和重复注射源自牙龈卟啉单胞菌的脂多糖的组合,在第上颌磨牙周围超过14天,提出了诱导牙周炎的大鼠模型。结扎和LPS注射技术可有效诱发牙周炎,导致牙槽骨质流失和炎症。

Abstract

牙周炎 (PD) 是一种非常普遍的慢性牙周免疫炎性疾病,会导致牙龈软组织、牙周韧带、牙骨质和牙槽骨丢失。在这项研究中,描述了一种诱导大鼠PD的简单方法。我们提供了在第一上颌磨牙(M1)周围放置结扎模型的详细说明,以及注射脂多糖(LPS)的组合,这些脂多糖来自M1中腭侧的 牙龈卟啉单胞菌 。牙周炎的诱导维持14天,促进细菌生物膜和炎症的积累。为了验证动物模型,通过牙龈沟液(GCF)中的免疫测定法测定了关键的炎症介质IL-1β,并使用锥形束计算机断层扫描(CBCT)计算了肺泡骨质流失。该技术可有效促进牙龈萎缩,肺泡骨质流失,并在14天后实验程序结束时GCF中IL-1β水平升高。该方法可有效诱导PD,因此能够用于疾病进展机制和未来可能的治疗方法的研究。

Introduction

牙周炎(PD)是全球第六大最普遍的公共卫生疾病,影响约11%的总人口,是一种晚期,不可逆转和破坏性的牙周病形式12。PD是一种影响牙龈和牙周组织的炎症过程,导致牙龈萎缩,交界上皮的顶端迁移伴口袋发育,以及牙槽骨的丧失3。此外,PD与几种全身性疾病有关,包括心血管疾病,肥胖症,糖尿病和类风湿性关节炎,环境和宿主特异性因素在其中起重要作用45

因此,PD是一种多因素疾病,主要由微生物斑块的积累(由微生物群落失调引起)和宿主对牙周病原体的过度免疫反应引起,这导致牙周组织分解46。在几种牙周细菌中,革兰氏阴性厌氧菌 牙龈卟啉单胞 菌是PD4的关键病原体之一。 牙龈卟啉单胞菌 在其壁中含有复杂的脂多糖(LPS),这种分子已知可诱导发炎的牙周组织中的多形核白细胞浸润和血管扩张7。这导致炎症介质的产生,例如白细胞介素 1 (IL-1)、IL-6 和 IL-8、肿瘤坏死因子 (TNF) 或前列腺素,随后破骨细胞活化和骨吸收,导致组织破坏和最终牙齿脱落3

动物模型的不同优点包括能够像人类一样模拟细胞复杂性,或者比体外研究更准确, 体外 研究是在细胞类型有限的塑料表面上进行的8。为了在 体内实验模拟PD,已经使用了不同的动物物种,如非人灵长类动物,狗,猪,雪貂,兔子,小鼠和大鼠9。然而,大鼠是研究PD发病机制最广泛的动物模型,因为它们价格低廉且易于处理10。他们的牙龈组织具有与人类牙龈组织相似的结构特征,牙龈沟较浅,交界上皮附着在牙齿表面。此外,与人类一样,交界上皮促进细菌、异物和炎症细胞渗出物的通过 9.

据报道,大鼠PD诱导实验模型之一是在牙齿周围放置结扎,这在技术上具有挑战性但可靠10。结扎位置有利于牙菌斑和细菌积聚,在牙龈沟中产生生态失调,从而导致牙周组织炎症和破坏11。在该大鼠模型中,牙周附着的丧失和肺泡骨的吸收可能在7天内发生8。

PD的另一种动物模型包括将LPS注射到牙龈组织中。结果,骨断裂形成和骨质流失受到刺激。该模型的组织病理学特征与人类建立的PD相似,其特征是更高水平的促炎细胞因子,胶原蛋白降解和肺泡骨吸收68

因此,本研究的目的是描述基于 牙龈卟啉单胞菌-LPS(Pg-LPS)注射技术,结合第一上颌磨牙(M1)周围的结扎放置的实验PD的简单大鼠模型。这是一个与人类PD疾病具有相似特征的模型,可用于研究疾病进展机制和未来可能的治疗方法。

Protocol

注:该研究的实验方案已获得巴利阿里群岛健康研究所动物实验伦理委员会(CEEA-UIB;参考编号163/03/21)的批准。 1. 动物麻醉和程序准备 手术前对所有手术器械(铝制口塞,牙科探索者,金刚石枪,手术剪刀,显微手术钳,微型针架,空背雕刻机,骨膜显微外科电梯和显微外科剪刀)进行消毒(在135°C下5分钟)。 在无菌条件下准备手术所需的所有?…

Representative Results

实验步骤的时间表如图 1所示。 图2A 显示了手术干预后下颌骨的图像,在实验的时间0处在M1的沟周围结扎。 图2B 显示了在手术14天后,M1周围的结扎如何进入牙龈沟,引起牙龈发炎并浸润积聚。 图1…

Discussion

该方法描述了 Pg-LPS注射和M1周围结扎放置的组合技术后在大鼠中诱导PD,揭示了该方法后14天内可以诱导牙周组织和牙槽骨的显着变化。

在此过程中,必须注意不同的关键步骤。在动物麻醉和手术准备期间,评估手术过程中的适当麻醉对其成功至关重要,确保动物的正确定位,用门牙周围的铝口堵嘴稳定张开的大鼠嘴,并避免动物被堵嘴和手术器械伤害。如果血氧饱和?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

这项工作得到了巴利尔斯大学企业基金会(2020年概念验证电话)的支持,由经济和竞争部卡洛斯三世健康研究所支持,由ESF欧洲社会基金和ERDF欧洲区域发展基金共同资助(与M.M.B;FI18/00104)和调查总局、调查委员会、巴利尔政府(与M.M.F.C;FPI/040/2020)。作者感谢Anna Tomás博士和Maria Tortosa博士在IdISBa实验手术和平台上的帮助。最后,感谢ADEMA牙科学院使用CBCT扫描仪。

Materials

Adsorbent paper point nº30  Proclinc 8187
Aprotinin Sigma-Aldrich A1153
Atipamezole Dechra 573751.5 Revanzol 5 mg/mL
Braided silk ligature (5/0)  Laboratorio Arago Sl 613112
Buprenorphine  Richter pharma 578816.6 Bupaq 0.3 mg/mL
Cone-beam computed tomography (CBCT) Scanner  MyRay hyperion X9 Model Hyperion X9
CTAn software SkyScan Version 1.13.4.0
Dental explorer  Proclinc 99743
Diamond lance-shaped bur  Dentaltix IT21517
Food maintenance diet Sodispain research ROD14 
Heated surgical platform PetSavers
Hollenback carver Hu-FRIEDY  HF45234
Hypodermic needle   BD  300600 25G X 5/8” – 0,5 X 16 MM
Isoflurane  Karizoo Isoflutek 1000mg/g
Ketamine   Dechra 581140.6 Anesketin 100 mg/mL
Lipopolysaccharide  derived from P.Gingivalis  InvivoGen TLRL-PGLPS
Methanol Fisher Scientific M/4000/PB08
Micro needle holter Fehling Surgical Instruments KOT-6
Microsurgical pliers KLS Martin 12-384-06-07
microsurgical scissors  S&T microsurgical instruments SDC-15 RV
Monitor iMEC 8 Vet Mindray 
Multiplex bead immunoassay Procartaplex, Thermo fisher Scientific PPX-05
Paraformaldehyde (PFA)  Sigma-Aldrich 8187151000
Periosteal microsurgical elevator  Dentaltix CU19112468
Phenylmethylsulfonylfluoride (PMSF)  Roche 10837091001
Phosphate Buffer Solution (PBS) Capricorn Scientific PBS-1A
PhosSTOP  Roche 4906845001 Commercial phosphatase inhibitor tablet 
Plastic vial SPL Lifesciencies 60015 1.5mL
Saline Cinfa 204024.3
Stereo Microscope  Zeiss Model SteREO Discovery.V12
Surgical loupes led light Zeiss
Surgical scissors  Zepf Surgical 08-1701-17
Syringe  BD plastipak 303172 1mL
Veterinary dental micromotor Eickemeyer 174028
Xylazine Calier 20102-003 Xilagesic 20 mg/mL

Riferimenti

  1. Carvalho, J. D. S., et al. Impact of citrus flavonoid supplementation on inflammation in lipopolysaccharide-induced periodontal disease in mice. Food and Function. 12 (11), 5007-5017 (2021).
  2. Nazir, M. A. Prevalence of periodontal disease, its association with systemic diseases and prevention. International Journal of Health Sciences. 1 (2), 72-80 (2017).
  3. Dumitrescu, A. L., El-Aleem, S. A., Morales-Aza, B., Donaldson, L. F. A model of periodontitis in the rat: Effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. Journal of Clinical Periodontology. 31 (8), 596-603 (2004).
  4. Wang, H. Y., et al. Preventive effects of the novel antimicrobial peptide Nal-P-113 in a rat Periodontitis model by limiting the growth of Porphyromonas gingivalis and modulating IL-1β and TNF-α production. BMC Complementary and Alternative Medicine. 17 (1), 1-10 (2017).
  5. Guan, J., Zhang, D., Wang, C. Identifying periodontitis risk factors through a retrospective analysis of 80 cases. Pakistan Journal of Medical Sciences. 38 (1), 293-296 (2021).
  6. Khajuria, D. K., Patil, O. N., Karasik, D., Razdan, R. Development and evaluation of novel biodegradable chitosan based metformin intrapocket dental film for the management of periodontitis and alveolar bone loss in a rat model. Archives of Oral Biology. 85, 120-129 (2018).
  7. Nishida, E., et al. Bone resorption and local interleukin-1alpha and interleukin-1beta synthesis induced by Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis lipopolysaccharide. Journal of Periodontal Research. 36 (1), 1-8 (2001).
  8. Graves, D. T., Kang, J., Andriankaja, O., Wada, K., Rossa, C. Animal models to study host-bacteria interactions involved in periodontitis. Bone. 23 (1), 1-7 (2008).
  9. Struillou, X., Boutigny, H., Soueidan, A., Layrolle, P. Experimental animal models in periodontology: a review. The Open Dentistry Journal. 4 (1), 37-47 (2010).
  10. Mustafa, H., et al. Induction of periodontal disease via retentive ligature, lipopolysaccharide injection, and their combination in a rat model. Polish Journal of Veterinary Sciences. 24 (3), 365-373 (2021).
  11. Chadwick, J. W., Glogauer, M. Robust ligature-induced model of murine periodontitis for the evaluation of oral neutrophils. Journal of Visualized Experiments. 2020 (155), 6-13 (2019).
  12. Cheng, R., Wu, Z., Li, M., Shao, M., Hu, T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. International Journal of Oral Science. 12 (1), 1-9 (2020).
  13. Abe, T., Hajishengallis, G. Optimization of the ligature-induced periodontitis model in mice. Journal of Immunological Methods. 394 (1-2), 49-54 (2013).
  14. Jeong-Hyon, K., Bon-Hyuk, G., Sang-Soo, N., Yeon-Cheol, P. A review of rat models of periodontitis treated with natural extracts. Journal of Traditional Chinese Medical Sciences. 7 (2), 95-103 (2020).
  15. Marchesan, J., et al. An experimental murine model to study periodontitis. Nature Protocols. 13 (10), 2247-2267 (2018).
  16. Lin, P., et al. Application of ligature-induced periodontitis in mice to explore the molecular mechanism of periodontal disease. International Journal of Molecular Sciences. 22 (16), 8900 (2021).
  17. Irie, M. S., et al. Use of micro-computed tomography for bone evaluation in dentistry. Brazilian Dental Journal. 29 (3), 227-238 (2018).
  18. Haas, L. F., Zimmermann, G. S., De Luca Canto, G., Flores-Mir, C., Corrêa, M. Precision of cone beam CT to assess periodontal bone defects: a systematic review and meta-analysis. Dentomaxillofacial Radiology. 47 (2), 20170084 (2018).
  19. Kamburoğlu, K., Ereş, G., Akgün, C. Qualitative and quantitative assessment of alveolar bone destruction in adult rats using CBCT. Journal of Veterinary Dentistry. 36 (4), 245-250 (2019).
  20. Sousa Melo, S. L., Rovaris, K., Javaheri, A. M., de Rezen de Barbosa, G. L. Cone-beam computed tomography (CBCT) imaging for the assessment of periodontal disease. Current Oral Health Reports. 7 (4), 376-380 (2020).

Play Video

Citazione di questo articolo
Munar-Bestard, M., Villa, O., Ferrà-Cañellas, M. d. M., Ramis, J. M., Monjo, M. Induction of Periodontitis via a Combination of Ligature and Lipopolysaccharide Injection in a Rat Model. J. Vis. Exp. (192), e64842, doi:10.3791/64842 (2023).

View Video