Summary

瓣膜内皮细胞的分离

Published: December 29, 2010
doi:

Summary

我们提供了隔离和培养心脏瓣膜内皮细胞(VEC)的纯种群的方法。血管内皮细胞可以分离出了风口浪尖或单张两侧及紧随,底层的间质细胞(VIC)的隔离很简单。

Abstract

心脏瓣膜是全权负责维持心血管系统的单向血液流动。这些薄,纤维组织受到显着的机械应力,因为他们打开和关闭一个寿命超过数十亿倍。这些组织的令人难以置信的耐力是,由于居民瓣膜内皮细胞(VEC)和间质细胞(VIC)的不断响应当地的机械和生物信号的修复和改造。直到最近,我们开始认识到这些细胞的独特的行为,在体外实验中起到了关键作用。尤其是具有挑战性的是血管内皮细胞的分离和文化。必须特别小心使用的那一刻起,该组织是由主机,最后通过电镀删除。在这里,我们目前的直接隔离,边具体隔离,文化,和核查的VEC纯种群的协议。我们使用温柔棉签刮技术打跑只是表面细胞的酶消化。这些细胞,然后收集到管到一个沉淀离心。然后再悬浮颗粒和镀到培养瓶中,与Ⅰ型胶原基质预涂。血管内皮细胞的表型是由接触证实,抑制细菌的生长和PECAM1(CD31),如内皮细胞特异性标志物的表达,血管性血友病因子(vWF),α-平滑肌肌动蛋白(α- SMA)的表达阴性。血管内皮细胞的功能特点与乙酰化低密度脂蛋白水平高。与血管内皮细胞,血管内皮细胞有独特的能力,转化为间质细胞,它通常发生在胚胎阀形成 1 。在显着延长在体外培养后融合,这也可能发生,所以应达到或接近汇合通行。维也纳国际中心纯种群的VEC隔离后,然后可以很容易获得。

Protocol

1。制备在有盖的仪器高压灭菌托盘下列事项: 锯齿组织钳 – 对于处理单张组织组织剪(8厘米) – 修剪单张组织和尖棉签 – 从单张或风口浪尖上的内皮细胞层隔离设为无菌胶原酶溶液添加4.0克奶粉的DMEM 250毫升18MΩ的水。 添加碳酸氢钠1.11克。 新增(600 U / mL)的18万单位的胶原酶。 添加1%(3ML)青霉素/链霉素。 调整pH值?…

Discussion

技术隔离的困难和心脏瓣膜内皮细胞的培养纯人口已经受损的瓣膜生物学的理解。典型的隔离技术涉及的底层基础矩阵内皮胶粘剂债券2,3或化学分解酶消化。初步分离实验进行了定性评估,不同的解离剂和潜伏期。这些实验结果表明,EDTA(或胰蛋白酶- EDTA)的潜伏期长达60分钟撞出细胞不成功。然而,检索纯瓣膜内皮细胞(表1)的可用数量为5-10分钟collagense消化证明是有效的。其他酶解?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国国家科学基金会职业奖,哈特韦尔基金会,和美国心脏协会(#0830384N)的支持。

Materials

Material Name Type Company Catalogue Number Comment
Dulbecco’s Modified Eagle Medium   Mediatech 50-103-PB  
Fetal Bovine Serum   Gibco 26140  
Penicillin Streptomycin   Gibco 15140-122  
0.25% Trypsin-EDTA   Gibco 25200  
Heparin Sodium Salt   Sigma-Aldrich H4784-1G  
Collagenase Type 2   Worthington Biochemical LS004176  
DPBS   Gibco 21300-058  
Rat Tail Collagen   BD Biosciences 354236  
Critical Swabs   VWR 89031-270  
Sodium Bicarbonate   Sigma-Aldrich 55761  
T25 Flasks   BD Biosciences 353018  
T75 Flasks   BD Biosciences 353136  
24 Well Plate   Falcon 353047  
60×15 mm Dishes   VWR 25384-092  
60×15 Glass Dishes   VWR 89000-310  
Paraffin Embedding Wax   Electron Microscopy Sciences 19304-01  
Precision Glide Needles   BD Biosciences 305165  
500 mL Nalgene Filters   VWR 73520-985  
1L Nalgene Filters   VWR 73520-986  
Tissue Forceps   Fine Science Tools 11023-15  
FSC Tweezers #5   Fine Science Tools 11295-00  

References

  1. Thompson, R. P., Fitzharris, T. P. Morphogenesis of the truncus arteriosus of the chick embryo heart: the formation and migration of mesenchymal tissue. Am J Anat. 154, 545-556 (1979).
  2. Johnson, C. M., Fass, D. N. Porcine cardiac valvular endothelial cells in culture: A relative deficiency of fibronectin synthesis in vitro. Lab Invest. 49 (5), 589-598 (1983).
  3. Manduteanu, I., Popov, D., Radu, A., Simionescu, M. Calf cardiac valvular endothelial cells in culture: production of glycosaminoglycans, prostacyclin and fibronectin. J Mol Cell Cardiol. 20 (2), 103-118 (1988).
  4. Cheunyg, W. Techniques for isolating and purifying porcine aortic valve endothelial cells. JHVD. 17 (6), 674-681 (2008).
  5. Paranya, G., Vineberg, S., Dvorin, E., Kaushal, S., Roth, S. J., Rabkin, E., Schoen, F. J., Bischoff, J. Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am J Pathol. 159 (4), 1335-1343 (2001).
  6. Butcher, J. T., Penrod, A., Garcia, A. J. M., Nerem, R. M. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Bio. 24 (1), 1429-1434 (2004).
  7. Simmons, C. A., Grant, G. R., Manduchi, E., Davies, P. F. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 96, 792-799 (2005).
  8. Butcher, J. T., Tressel, S., Johnson, T., Turner, D., Sorescu, G., Jo, H., Nerem, R. M. Transcriptional Profiles of Valvular and Vascular Endothelial Cells Reveal Phenotypic Differences: Influence of Shear Stress. Arterioscler Thromb Vasc Biol. 26, 69-69 (2006).
  9. Parachuri, S., Yang, J. H., Aikawa, E., Melero-Martin, J. M., Khan, Z. A., Loukogeorgakis, S., Schoen, F. J., Bischoff, J. Human Pulmonary Valve Progenitor Cells Exhibit Endothelial/Mesenchymal Plasticity in Response to Vascular Endothelial Growth Factor-A and Transforming Growth Factor-β2. Circ Res. 99 (8), 861-869 (2006).
  10. Shi, Q. Evidence for circulating bone marrow-derived endothelial cells. Blood. 92, 362-367 (1998).
  11. Rehman, J., Li, J., Orschell, C. M., March, K. L. Peripheral blood endothelial progenitor cells are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 107, 1164-1169 (2003).
check_url/kr/2158?article_type=t

Play Video

Cite This Article
Gould, R. A., Butcher, J. T. Isolation of Valvular Endothelial Cells. J. Vis. Exp. (46), e2158, doi:10.3791/2158 (2010).

View Video