Summary

のためのシンプルなマイクロ流体デバイス<em生体内で></emの>イメージング<em> Cエレガンス</em><em>ショウジョウバエ</em>とゼブラフィッシュ

Published: September 30, 2012
doi:

Summary

シンプルなマイクロ流体デバイスは、麻酔薬を無料で行うために開発されました<em生体内で></emの>イメージング<em> Cエレガンス</em>無傷<em>ショウジョウバエ</em>幼虫とゼブラフィッシュの幼虫。デバイスは、心拍、細胞分裂や細胞内輸送などの多数の神経プロセスのタイムラプスイメージングを実行するために、これらのモデル生物を固定化するために変形されたPDMS膜を利用しています。我々は、この装置の使用方法を示す、別のモデルシステムから収集したデータの様々なタイプの例を示しています。

Abstract

マイクロ流体デバイスを作製は、小さな生物に関するin vivo研究のためのアクセス可能な微小環境を提供します。シンプルな製造プロセスは1-3ソフトリソグラフィ技術を用いて、マイクロ流体デバイスのために用意されています。マイクロ流体デバイスは、 生体内レーザー顕微2,6と細胞イメージング4,7 サブ細胞イメージング4,5、のために使用されている。in vivoイメージング生物の固定化を必要とします。これは、吸引5,8を使用して達成されている、先細チャネル6,7,9、変形可能な膜2-4,10、追加の冷却5、麻酔ガス11、温度感受性ゲル12、シアノアクリレート接着剤1314のような麻酔レバミゾールと吸引、15。一般的に使用される麻酔薬は、シナプス伝達16,17に影響を与え、細胞内神経輸送4に有害な影響を有することが知られている。本STにおけるudy我々はそのような線虫Caenorhabditis elegans(線虫C. elegans)、ショウジョウバエの幼虫とゼブラフィッシュの幼虫のようにそのまま遺伝的モデル生物の麻酔フリー固定化を可能にするポリジメチルシロキサン(PDMS)装置による膜を実証している。これらのモデル生物は、それらの小さい直径および光学的に透明または半透明の体のマイクロ流体デバイス用いたin vivo研究では適しています。本体の直径はCの初期の幼虫のために約10μmから約800μmの範囲やゼブラフィッシュ幼生と高解像度タイムラプスイメージングのための完全な固定化を達成するために、異なるサイズのマイクロ流体デバイスを必要とします。これらの生物は、液体カラムを通して圧縮窒素ガスによる圧力を用いて固定し、倒立顕微鏡を用いて結像​​される。トラップから解放動物が10分以内に通常の歩行に戻ります。

我々は、Cのタイムラプスイメージングの4つのアプリケーションを実証エレガンスすなわち、神経細胞におけるイメージングミトコンドリア輸送、輸送欠損変異株、グルタミン酸受容体輸送とQ神経芽細胞の細胞分裂における前シナプス小胞輸送。映画などから得られたデータは、マイクロ流体固定化は麻酔動物( 図1J3C-F 4)と比較した場合、携帯電話とサブ細胞事象のin vivoデータ取得の有用かつ正確な手段であることを示している。

デバイスの寸法 Cの様々な段階のタイムラプスイメージングを可能にするように変更されました線虫ショウジョウバエの初齢幼虫とゼブラフィッシュの幼虫。感覚神経細胞にGFP(syt.eGFP)でタグシナプトタグミンでマーク小胞の輸送はそのまま初齢ショウジョウバエの幼虫のコリン作動性感覚神経細胞で発現シナプス小胞マーカーの指示の動きを示しています。似たようなデバイスが〜30時間後に受精(HPF)でハートビートのタイムラプスイメージングを行うために使用されています幼虫をゼブラフィッシュ。これらのデータは、我々が開発したシンプルなデバイスが生体内でいくつかの細胞生物学的および発達現象を研究するためのモデルシステムの様々に応用できることを示す。

Protocol

1。 SU8マスター作製 Clewinソフトウェアを使用して、マイクロ流体構造を設計し、回路基板フィルム上に8μmの最小特徴サイズで65024 dpiのレーザープロッターを使用してそれを印刷してください。 1分間、20%KOH中で自然酸化で2センチ×2cmのシリコンウエハをきれいにし、脱イオン水ですすぎ、流れの層とそれに対応する制御層用ウェーハ各1。 窒素ガスでピースを乾燥させ…

Representative Results

図1に示すように、フロー層(レイヤ1)と制御層(レイヤ2):固定装置は、接着層2で作製した二層のPDMSブロックです。主なトラップは、レギュレータと液柱( 図1A)を介して膜上必要(3-14 psi)の圧力を適用するための3ウェイストップコックを介して窒素ガスボンベに接続されています。偏向膜は C を固定する異なる次元( 図1Bおよび<str…

Discussion

PDMSマイクロ流体デバイスは、したがって、任意の透明/半透明モデル生物のin vivoイメージング高分解能のために使用することができる光学的に透明である。当社のデザインはそのまま生きた動物における細胞およびサブ細胞事象の高倍率時空イメージングに適しています。ソフトリソグラフィ技術を用いて微細加工は、モデル生物の様々なサイズのためのデバイスの寸法を簡単に操作…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我々は、CnuIs25とCGCのためのピーター十王、 ショウジョウバエケージを維持するために、ショウジョウバエの株式、Tarjani Agarwalさんのために博士Krishanuレイに感謝エレガンス株。 SPKはマイケルノネの研究室でjsIs609を作った。我々は、マイクロ流体デバイスにおけるjsIs609動物のミトコンドリア輸送のタイムラプスイメージングで彼の助けArpan Agnihotri(BITSピラニ)に感謝。我々は、ゼブラフィッシュ胚を提供してくれるための博士VatsalaティルマとスーリヤPrakashさんに感謝しています。我々は、ナノテクノロジー(第SR/55/NM-36-2005)のための科学と技術 – センターの部門によってサポートされ回転するディスク共焦点顕微鏡の使用のNCBで博士クリシュナとCIFFに感謝します。我々はまた、議論のためKaustubh Rauさん、V. VenkatramanとChetana Sachidanandに感謝します。この作品は、DBTポスドクフェローシップ(SM)は、DSTのファスト·トラック制度(SM)とによる助成(SPK)によって賄われていた。 SAはSPKにDSTとCSIR補助金によって支えられている。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Silicon wafers University wafer 150 mm (100) Mech Grade SSP Si  
Clewin Software WieWeb software Version 2.90  
Laser plotter Fine Line Imaging 65,024 DPI  
HMDS Sigma-Aldrich 440191-100ML  
SU8 Microchem SU8-2025, SU8-2050  
Developer Microchem SU8 Developer  
Silane Sigma-Aldrich 448931-10G  
PDMS Dow corning Sylgard 184  
UV lamp Oriel 66943 200W Hg Oriel Light
Hot air oven Ultra Instruments Custom made Set at 50 °C
Hot plate IKA Laboratory Equipment 3810000 http://www.ika.com
Plasma cleaner Harrick Plasma PDC-32G  
Spinner Semiconductor Production Systems SPIN150-NPP www.SPS-Europe.com
Glass cover slip Gold Seal 22 X 22 mm, No. 1 thickness  
C. elegans Caenorhabditis Genetics Center (CGC) e1265, ayIs4  
Drosophila Bloomington P{chaGAL4}/cyo, UAS-syt.eGFP  
Zebrafish Indian wild type Wild type  
Tygon tube Sigma Z279803  
Micro needle Sigma Z118044 Cut into 1 cm pieces
3-way stopcock Sigma S7521  
Harris puncher Sigma Z708631  
Compressed nitrogen gas Local Gas supplier   Use a regulator to control the pressure
Stereo microscope Nikon SMZ645  
Confocal microscope Andor & Olympus Yokogawa spinning disc confocal microscope  
ImageJ National Institutes of Health www.rsbweb.nih.gov/ij Java based image processing program

References

  1. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X., Ingber, D. E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335-373 (2001).
  2. Guo, S. X. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat. Methods. 5, 531-533 (2008).
  3. Gilleland, C. L., Rohde, C. B., Zeng, F., Yanik, M. F. Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat. Protoc. 5, 1888-1902 (2010).
  4. Mondal, S., Ahlawat, S., Rau, K., Venkataraman, V., Koushika, S. P. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic. 12, 372-385 (2011).
  5. Chung, K., Crane, M. M., Lu, H. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods. 5, 637-643 (2008).
  6. Allen, P. B. Single-synapse ablation and long-term imaging in live C. elegans. J. Neurosci. Methods. 173, 20-26 (2008).
  7. Chronis, N., Zimmer, M., Bargmann, C. I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods. 4, 727-731 (2007).
  8. Rohde, C. B., Zeng, F., Gonzalez-Rubio, R., Angel, M., Yanik, M. F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. U.S.A. 104, 13891-13895 (2007).
  9. Hulme, S. E., Shevkoplyas, S. S., Apfeld, J., Fontana, W., Whitesides, G. M. A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip. 7, 1515-1523 (2007).
  10. Zeng, F., Rohde, C. B., Yanik, M. F. Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip. 8, 653-656 (2008).
  11. Chokshi, T. V., Ben-Yakar, A., Chronis, N. CO2 and compressive immobilization of C. elegans on-chip. Lab Chip. 9, 151-157 (2009).
  12. Krajniak, J., Lu, H. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip. 10, 1862-1868 (2010).
  13. Goodman, M. B., Hall, D. H., Avery, L., Lockery, S. R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron. 20, 763-772 (1998).
  14. Snow, J. J. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109-1113 (2004).
  15. Lewis, J. A., Wu, C. H., Berg, H., Levine, J. H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. 유전학. 95, 905-928 (1980).
  16. Richmond, J. E., Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 2, 791-797 (1999).
  17. Badre, N. H., Martin, M. E., Cooper, R. L. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 140, 363-376 (2005).
  18. Stiernagle, T. Maintenance of C. elegans. WormBook. , 1-11 (2006).
  19. Westerfield, M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). , (2000).
  20. Henn, K., Braunbeck, T. Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 153, 91-98 (2011).
  21. Fatouros, C. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. , (2012).
  22. Barkus, R. V., Klyachko, O., Horiuchi, D., Dickson, B. J., Saxton, W. M. Identification of an axonal kinesin-3 motor for fast anterograde vesicle transport that facilitates retrograde transport of neuropeptides. Mol. Biol. Cell. 19, 274-283 (2008).
  23. Craig, M. P., Gilday, S. D., Hove, J. R. Dose-dependent effects of chemical immobilization on the heart rate of embryonic zebrafish. Lab. Anim. (NY). 35, 41-47 (2006).
  24. Pardo-Martin, C. High-throughput in vivo vertebrate screening. Nat. Methods. 7, 634-636 (2010).
  25. Stainier, D. Y., Lee, R. K., Fishman, M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development. 119, 31-40 (1993).
  26. Hall, D. H., Hedgecock, E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 65, 837-847 (1991).
  27. Kumar, J. The Caenorhabditis elegans Kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genet. 6, e1001200 (2010).
  28. Ou, G., Vale, R. D. Molecular signatures of cell migration in C. elegans Q neuroblasts. J. Cell. Biol. 185, 77-85 (2009).
  29. Levitan, E. S., Lanni, F., Shakiryanova, D. In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction. Nat. Protoc. 2, 1117-1125 (2007).
  30. Morris, R. L., Hollenbeck, P. J. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell. Sci. 104, 917-927 (1993).
  31. Louie, K., Russo, G. J., Salkoff, D. B., Wellington, A., Zinsmaier, K. E. Effects of imaging conditions on mitochondrial transport and length in larval motor axons of Drosophila. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 151, 159-172 (2008).
  32. Pilling, A. D., Horiuchi, D., Lively, C. M., Saxton, W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell. 17, 2057-2068 (2006).
check_url/kr/3780?article_type=t

Play Video

Cite This Article
Mondal, S., Ahlawat, S., Koushika, S. P. Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish. J. Vis. Exp. (67), e3780, doi:10.3791/3780 (2012).

View Video