Summary

制备髓源性抑制细胞从幼稚和胰腺癌荷瘤小鼠,用流式细胞仪和自动磁性细胞分选(AutoMACS)(MDSC)

Published: June 18, 2012
doi:

Summary

这是一个迅速和全面的免疫髓源性抑制细胞(MDSC)和丰富GR-1的方法<sup> -</sup>从小鼠脾脏白细胞。这种方法使用流式细胞仪和AutoMACS细胞排序丰富可行的GR-1<sup> -</sup>白细胞之前使用的MDSC排序,以流式细胞仪<em>在体内</em>和<em>在体外</em>检测。

Abstract

的MDSC是一个不成熟的巨噬细胞,树突状细胞和粒细胞积聚在病理条件下的淋巴器官,包括寄生虫感染,炎症,创伤后应激,移植物抗宿主病,糖尿病和癌症1-7异构人口。在小鼠的MDSC明示的Mac-1(细胞CD11b)和GR-1(Ly6G和Ly6C)表面抗原。重要的是要注意的MDSC荷,它们显着扩大在各个主机研究和压制7-10天真对口相比抗肿瘤免疫反应。然而,根据病理状态,有不同的MDSC亚与不同的机制和抑制11,12的目标。因此,有效的方法来隔离可行的MDSC人口是重要的,在阐明各自不同的分子机制抑制在体外体内

近日,在Ghansah组报告的MDSC在小鼠胰腺癌模型的扩展。我们的肿瘤轴承的MDSC显示动态平衡的损失,并增加抑制功能比较幼稚的MDSC 13。的MDSC的百分比显着天真与荷瘤小鼠的淋巴车厢。这是一个重大的警告,这往往阻碍了这些的MDSC准确的比较分析。因此,丰富天真小鼠GR-1 +白细胞荧光激活细胞分选(FACS)前提高纯度,活力和排序的时间显着降低。然而,丰富的GR-1 +荷瘤小鼠的白细胞是可选的,因为这些丰富的排序快速流式细胞仪。因此,在这个协议中,我们描述了一个高效的方法,免疫的MDSC从排序的MDSC及时天真小鼠脾脏和丰富的Gr-1 +白细胞。免疫C57BL / 6小鼠接种小鼠Panc02 CE的LLS皮下而天真的小鼠接受1XPBS。大约30天接种后脾脏被采伐和加工成单细胞悬液采用细胞分离筛。脾然后红细胞(RBC)的裂解,这些白细胞等分对MAC-1和GR-1免疫的MDSC百分比用流式细胞仪使用荧光标记抗体染色。在一个类似的实验,从整个天真的小鼠白细胞染色与荧光标记的GR-1抗体,培养与PE的微珠和正选择使用一个自动化的磁性活化细胞分选(autoMACS)分离。接下来,GR-1 +白细胞等份与Mac-1抗体染色,以确定在使用流式细胞仪的MDSC百分比增加。现在,这些GR1 +丰富的白细胞是准备用于比较分析(天真与荷瘤) 在体内体外的MDSC排序流式细胞仪</em>的检测。

Protocol

开始之前,请准备以下解决方案: 3%,染色媒体(SM): -3%的胎牛血清(FBS),1X的磷酸盐缓冲液(PBS) 磁珠缓存(MB): – 牛血清白蛋白(BSA)的0.5%白蛋白在1XPBS 1。收获从小鼠脾脏皮下注入1.5×10 5小鼠Panc02细胞悬浮在100μL1X PBS 6-8周岁的C57BL / 6…

Discussion

这是一个详细的方法处理和immunophentyping的MDSC人口,是适用于各种动物模型不同的淋巴组织。特别,autoMACS富集,可用于各种白细胞的人口,包括GR-1枯竭脾4,从脾和淋巴结肿大5粒细胞亚群的净化,分 ​​离骨髓中性粒细胞14和纯化的CD8 + T细胞从脾隔离和淋巴结15。无论所需的淋巴组织产生白细胞的单细胞悬液的细胞群体的利益,需要最佳表面染色,流式?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们承认USF流式细胞仪核心设施。我们想感谢丹尼斯库珀博士资源共享。我们也想感谢他们的协助玛雅科恩,劳拉·彭德尔顿和戴安娜拉图尔建立和拍摄这部影片。神经网络的支持NSF FG-LSAMP桥博士奖学金人力资源开发#0929435。这项工作是由美国癌症学会院校研究资助#93-032-13/Moffitt癌症中心颁发到TG。

Materials

REAGENT COMPANY CATALOG # COMMENTS
1X Phosphate Buffered Saline Thermo Scientific Hyclone SH30028.02 Ca2+/Mg2+/Phenol Red-free
Albumin from Bovine Serum (BSA) Sigma-Aldrich A7906 Let BSA dissolve undisturbed in PBS; Sterile Environment
Fetal Bovine Serum (FBS) Thermo Scientific Hyclone SV3001403HI Heat Inactivated; Sterile Environment
Rat anti-mouse CD16/32 monoclonal antibody (Fc Block) BD Biosciences 553142 Sterile Environment
Anti-mouse CD11b (Mac-1) FITC eBiosciences 11-0112 Sterile Environment
Anti-mouse Ly6G (Gr-1) APC eBiosciences 17-5931 Sterile Environment
Anti-mouse Ly6G (Gr-1) PE eBiosciences 12-5931 Sterile Environment
DAPI Invitrogen D1306 Serial Dilution Sterile Environment
Cell Dissociation Sieve Sigma-Aldrich CD1-1KT Autoclave before use
70-μm strainer BD Biosciences 352350 Sterile Environment
1X RBC Lysis Buffer eBiosciences 00-4333-57 Warm to room temperature before use; Sterile Environment
Petri dishes Fisher Scientific 08-757-12 Sterile Environment
50ml conical tubes Thermo Scientific 339652 Sterile Environment
5ml 12X75mm polystyrene round bottom tubes BD Biosciences 352054 Known as FACS tubes; Sterile Environment
96-well V-bottom plates Corning 3897 Sterile Environment
Trypan Blue Cellgro 25-900-CI Sterile Environment
PE MicroBeads Miltenyi Biotec 130-048-801 Sterile Environment
AutoMACS Pro Separator Miltenyi Biotec 130-092-545  
AutoMACS Columns Miltenyi Biotec 130-021-101  
AutoMACS Running Buffer Miltenyi Biotec 130-091-221  

References

  1. Goni, O., Alcaide, P., Fresno, M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+) immature myeloid suppressor cells. Int. Immunol. 14, 1125-1134 (2002).
  2. Zhu, B. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228-5237 (2007).
  3. Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A., Ochoa, J. B. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 176, 2085-2094 (2006).
  4. Ghansah, T. Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J. Immunol. 173, 7324-7330 (2004).
  5. Paraiso, K. H., Ghansah, T., Costello, A., Engelman, R. W., Kerr, W. G. Induced SHIP deficiency expands myeloid regulatory cells and abrogates graft-versus-host disease. J. Immunol. 178, 2893-2900 (2007).
  6. Yin, B. Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J. Immunol. 185, 5828-5834 (2010).
  7. Gabrilovich, D. I., Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174 (2009).
  8. Gallina, G. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777-2790 (2006).
  9. Zhao, F. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology. 128, 141-149 (2009).
  10. Greten, T. F., Manns, M. P., Korangy, F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 11, 802-806 (2011).
  11. Youn, J. I., Nagaraj, S., Collazo, M., Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791-5802 (2008).
  12. Ribechini, E., Greifenberg, V., Sandwick, S., Lutz, M. B. Subsets, expansion and activation of myeloid-derived suppressor cells. Med. Microbiol. Immunol. 199, 273-281 (2010).
  13. Pilon-Thomas, S. Murine Pancreatic Adenocarcinoma Dampens SHIP-1 Expression and Alters MDSC Homeostasis and Function. PLoS One. 6, (2011).
  14. Panopoulos, A. D. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood. 108, 3682-3690 (2006).
  15. Preynat-Seauve, O. Extralymphatic tumors prepare draining lymph nodes to invasion via a T-cell cross-tolerance process. Cancer Res. 67, 5009-5016 (2007).
  16. Davies, D. Cell separations by flow cytometry. Methods Mol. Med. 58, 3-15 (2001).
  17. Maecker, H., Trotter, J. Selecting reagents for multicolor BD flow cytometry. Postepy Biochem. 55, 461-467 (2009).
  18. Bagwell, C. B., Adams, E. G. Fluorescence Spectral Overlap Compensation for Any Number of Flow Cytometry Parameters. Annals of the New York Academy of Sciences. 677, 167-184 (1993).
  19. Perfetto, S. P. Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods. 313, 199-208 (2006).
  20. Safarik, I., Safarikova, M. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B. Biomed. Sci. Appl. 722, 33-53 (1999).
  21. Collazo, M. M. SHIP limits immunoregulatory capacity in the T-cell compartment. Blood. 113, 2934-2944 (2009).
  22. Mack, E., Neubauer, A., Brendel, C. Comparison of RNA yield from small cell populations sorted by flow cytometry applying different isolation procedures. Cytometry. A. 71, 404-409 (2007).
  23. Strauss, L., Czystowska, M., Szajnik, M., Mandapathil, M., Whiteside, T. L. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS One. 4, e5994 (2009).
check_url/kr/3875?article_type=t

Play Video

Cite This Article
Nelson, N., Szekeres, K., Cooper, D., Ghansah, T. Preparation of Myeloid Derived Suppressor Cells (MDSC) from Naive and Pancreatic Tumor-bearing Mice using Flow Cytometry and Automated Magnetic Activated Cell Sorting (AutoMACS). J. Vis. Exp. (64), e3875, doi:10.3791/3875 (2012).

View Video