Summary

制备髓源性抑制细胞从幼稚和胰腺癌荷瘤小鼠,用流式细胞仪和自动磁性细胞分选(AutoMACS)(MDSC)

Published: June 18, 2012
doi:

Summary

这是一个迅速和全面的免疫髓源性抑制细胞(MDSC)和丰富GR-1的方法<sup> -</sup>从小鼠脾脏白细胞。这种方法使用流式细胞仪和AutoMACS细胞排序丰富可行的GR-1<sup> -</sup>白细胞之前使用的MDSC排序,以流式细胞仪<em>在体内</em>和<em>在体外</em>检测。

Abstract

的MDSC是一个不成熟的巨噬细胞,树突状细胞和粒细胞积聚在病理条件下的淋巴器官,包括寄生虫感染,炎症,创伤后应激,移植物抗宿主病,糖尿病和癌症1-7异构人口。在小鼠的MDSC明示的Mac-1(细胞CD11b)和GR-1(Ly6G和Ly6C)表面抗原。重要的是要注意的MDSC荷,它们显着扩大在各个主机研究和压制7-10天真对口相比抗肿瘤免疫反应。然而,根据病理状态,有不同的MDSC亚与不同的机制和抑制11,12的目标。因此,有效的方法来隔离可行的MDSC人口是重要的,在阐明各自不同的分子机制抑制在体外体内

近日,在Ghansah组报告的MDSC在小鼠胰腺癌模型的扩展。我们的肿瘤轴承的MDSC显示动态平衡的损失,并增加抑制功能比较幼稚的MDSC 13。的MDSC的百分比显着天真与荷瘤小鼠的淋巴车厢。这是一个重大的警告,这往往阻碍了这些的MDSC准确的比较分析。因此,丰富天真小鼠GR-1 +白细胞荧光激活细胞分选(FACS)前提高纯度,活力和排序的时间显着降低。然而,丰富的GR-1 +荷瘤小鼠的白细胞是可选的,因为这些丰富的排序快速流式细胞仪。因此,在这个协议中,我们描述了一个高效的方法,免疫的MDSC从排序的MDSC及时天真小鼠脾脏和丰富的Gr-1 +白细胞。免疫C57BL / 6小鼠接种小鼠Panc02 CE的LLS皮下而天真的小鼠接受1XPBS。大约30天接种后脾脏被采伐和加工成单细胞悬液采用细胞分离筛。脾然后红细胞(RBC)的裂解,这些白细胞等分对MAC-1和GR-1免疫的MDSC百分比用流式细胞仪使用荧光标记抗体染色。在一个类似的实验,从整个天真的小鼠白细胞染色与荧光标记的GR-1抗体,培养与PE的微珠和正选择使用一个自动化的磁性活化细胞分选(autoMACS)分离。接下来,GR-1 +白细胞等份与Mac-1抗体染色,以确定在使用流式细胞仪的MDSC百分比增加。现在,这些GR1 +丰富的白细胞是准备用于比较分析(天真与荷瘤) 在体内体外的MDSC排序流式细胞仪</em>的检测。

Protocol

开始之前,请准备以下解决方案: 3%,染色媒体(SM): -3%的胎牛血清(FBS),1X的磷酸盐缓冲液(PBS) 磁珠缓存(MB): – 牛血清白蛋白(BSA)的0.5%白蛋白在1XPBS 1。收获从小鼠脾脏皮下注入1.5×10 5小鼠Panc02细胞悬浮在100μL1X PBS 6-8周岁的C57BL / 6…

Discussion

这是一个详细的方法处理和immunophentyping的MDSC人口,是适用于各种动物模型不同的淋巴组织。特别,autoMACS富集,可用于各种白细胞的人口,包括GR-1枯竭脾4,从脾和淋巴结肿大5粒细胞亚群的净化,分 ​​离骨髓中性粒细胞14和纯化的CD8 + T细胞从脾隔离和淋巴结15。无论所需的淋巴组织产生白细胞的单细胞悬液的细胞群体的利益,需要最佳表面染色,流式?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们承认USF流式细胞仪核心设施。我们想感谢丹尼斯库珀博士资源共享。我们也想感谢他们的协助玛雅科恩,劳拉·彭德尔顿和戴安娜拉图尔建立和拍摄这部影片。神经网络的支持NSF FG-LSAMP桥博士奖学金人力资源开发#0929435。这项工作是由美国癌症学会院校研究资助#93-032-13/Moffitt癌症中心颁发到TG。

Materials

REAGENT COMPANY CATALOG # COMMENTS
1X Phosphate Buffered Saline Thermo Scientific Hyclone SH30028.02 Ca2+/Mg2+/Phenol Red-free
Albumin from Bovine Serum (BSA) Sigma-Aldrich A7906 Let BSA dissolve undisturbed in PBS; Sterile Environment
Fetal Bovine Serum (FBS) Thermo Scientific Hyclone SV3001403HI Heat Inactivated; Sterile Environment
Rat anti-mouse CD16/32 monoclonal antibody (Fc Block) BD Biosciences 553142 Sterile Environment
Anti-mouse CD11b (Mac-1) FITC eBiosciences 11-0112 Sterile Environment
Anti-mouse Ly6G (Gr-1) APC eBiosciences 17-5931 Sterile Environment
Anti-mouse Ly6G (Gr-1) PE eBiosciences 12-5931 Sterile Environment
DAPI Invitrogen D1306 Serial Dilution Sterile Environment
Cell Dissociation Sieve Sigma-Aldrich CD1-1KT Autoclave before use
70-μm strainer BD Biosciences 352350 Sterile Environment
1X RBC Lysis Buffer eBiosciences 00-4333-57 Warm to room temperature before use; Sterile Environment
Petri dishes Fisher Scientific 08-757-12 Sterile Environment
50ml conical tubes Thermo Scientific 339652 Sterile Environment
5ml 12X75mm polystyrene round bottom tubes BD Biosciences 352054 Known as FACS tubes; Sterile Environment
96-well V-bottom plates Corning 3897 Sterile Environment
Trypan Blue Cellgro 25-900-CI Sterile Environment
PE MicroBeads Miltenyi Biotec 130-048-801 Sterile Environment
AutoMACS Pro Separator Miltenyi Biotec 130-092-545  
AutoMACS Columns Miltenyi Biotec 130-021-101  
AutoMACS Running Buffer Miltenyi Biotec 130-091-221  

References

  1. Goni, O., Alcaide, P., Fresno, M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+) immature myeloid suppressor cells. Int. Immunol. 14, 1125-1134 (2002).
  2. Zhu, B. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228-5237 (2007).
  3. Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A., Ochoa, J. B. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 176, 2085-2094 (2006).
  4. Ghansah, T. Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J. Immunol. 173, 7324-7330 (2004).
  5. Paraiso, K. H., Ghansah, T., Costello, A., Engelman, R. W., Kerr, W. G. Induced SHIP deficiency expands myeloid regulatory cells and abrogates graft-versus-host disease. J. Immunol. 178, 2893-2900 (2007).
  6. Yin, B. Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J. Immunol. 185, 5828-5834 (2010).
  7. Gabrilovich, D. I., Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174 (2009).
  8. Gallina, G. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777-2790 (2006).
  9. Zhao, F. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology. 128, 141-149 (2009).
  10. Greten, T. F., Manns, M. P., Korangy, F. Myeloid derived suppressor cells in human diseases. Int Immunopharmacol. 11, 802-806 (2011).
  11. Youn, J. I., Nagaraj, S., Collazo, M., Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791-5802 (2008).
  12. Ribechini, E., Greifenberg, V., Sandwick, S., Lutz, M. B. Subsets, expansion and activation of myeloid-derived suppressor cells. Med. Microbiol. Immunol. 199, 273-281 (2010).
  13. Pilon-Thomas, S. Murine Pancreatic Adenocarcinoma Dampens SHIP-1 Expression and Alters MDSC Homeostasis and Function. PLoS One. 6, (2011).
  14. Panopoulos, A. D. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. Blood. 108, 3682-3690 (2006).
  15. Preynat-Seauve, O. Extralymphatic tumors prepare draining lymph nodes to invasion via a T-cell cross-tolerance process. Cancer Res. 67, 5009-5016 (2007).
  16. Davies, D. Cell separations by flow cytometry. Methods Mol. Med. 58, 3-15 (2001).
  17. Maecker, H., Trotter, J. Selecting reagents for multicolor BD flow cytometry. Postepy Biochem. 55, 461-467 (2009).
  18. Bagwell, C. B., Adams, E. G. Fluorescence Spectral Overlap Compensation for Any Number of Flow Cytometry Parameters. Annals of the New York Academy of Sciences. 677, 167-184 (1993).
  19. Perfetto, S. P. Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods. 313, 199-208 (2006).
  20. Safarik, I., Safarikova, M. Use of magnetic techniques for the isolation of cells. J. Chromatogr. B. Biomed. Sci. Appl. 722, 33-53 (1999).
  21. Collazo, M. M. SHIP limits immunoregulatory capacity in the T-cell compartment. Blood. 113, 2934-2944 (2009).
  22. Mack, E., Neubauer, A., Brendel, C. Comparison of RNA yield from small cell populations sorted by flow cytometry applying different isolation procedures. Cytometry. A. 71, 404-409 (2007).
  23. Strauss, L., Czystowska, M., Szajnik, M., Mandapathil, M., Whiteside, T. L. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS One. 4, e5994 (2009).

Play Video

Cite This Article
Nelson, N., Szekeres, K., Cooper, D., Ghansah, T. Preparation of Myeloid Derived Suppressor Cells (MDSC) from Naive and Pancreatic Tumor-bearing Mice using Flow Cytometry and Automated Magnetic Activated Cell Sorting (AutoMACS). J. Vis. Exp. (64), e3875, doi:10.3791/3875 (2012).

View Video