Summary

静电纤维组织工程的后期处理

Published: August 09, 2012
doi:

Summary

静电支架可以处理后生产组织工程的应用。在这里,我们描述复杂的支架(连续纺),为实现无菌(无菌生产或灭菌后生产)和较厚的支架(多分层使用热或蒸汽退火)为实现适当的生物力学性能,纺纱方法。

Abstract

静电是一种常用和通用的方法来产生3D组织工程支架材料(通常是可生物降解),1,2,3 在体内许多组织进行双向腹胀如皮肤,膀胱,盆底,甚至为儿童硬腭不同程度的增长。在生产支架为这些目的,有必要制定适当的生物力学性能的支架(是否没有或细胞与实现)和临床使用无菌。本文的重点是如何建立基本的静电参数(如静电有大量的文献),但对如何修改纺支架的后期制作,以使他们适合组织工程的目的 – 这里的厚度,力学性能和灭菌(需要临床使用)被认为是,我们还描述了如何可以培养细胞支架和双轴应变条件为特定应用。

静电往往会产生薄片;静电收集变得与中空纤维涂上它变成不良导体,如纤维不再存款。因此,我们描述的方法来产生热或蒸汽退火增加支架的强度,但不一定是弹性的较厚结构。连续纺丝支架不同的聚合物,以实现复杂的支架也被描述。灭菌方法可以产生不利影响支架的强度和弹性。我们比较三种方法对静电聚乳酸 – 乙醇酸共聚物(PLGA)支架的生物力学性能的影响。

细胞外基质(ECM)在支架上的细胞蛋白质生产的支架和评估被描述成像。支架在体外培养细胞可以提高支架强度和弹性,但组织工程literatu再次表明,细胞往往不能产生相应的ECM静态条件下培养。很少有商业系统,使一个动态调节制度下的支架上的培养细胞-一个例子是,它可以用来对细胞在支架上的空调方案在媒体使用机械交手充满室举行的玻色Electroforce 3100 4预算控制在2维的失真细胞培养生物反应器的方法描述。我们表明,细胞可以诱导产生这些条件下的弹性。最后加工或无细胞培养支架的生物力学性能的评估描述。

Protocol

1。静电的随机和不结盟的纤维静电创建通过电位对接地收藏家绘制的聚合物溶液的细纤维网络。集热器可以在很多的形状,可以是静态的,更常见的旋转。溶剂蒸发解决方案之前到达集电极和喷流凝固成纤维。 每种聚合物需要其自己的一套条件,生产的纤维类型。的聚合物,溶剂的浓度,泵浦解决方案和集电极接地,两者之间的电位差之间的距离,速度?…

Discussion

静电是一个非常流行的技术,生产组织工程支架。,14,15,16,虽然它是相对简单的生产实验用静电支架基本技术是复杂和多方面的,有许多变数。有许多研究描述如何电参数确定支架的生产。在这项研究中的重点是在相当大的挑战“的后期制作,作出适当的结构和力学性能的支架,并鼓励在他们的细胞,使细胞外蛋白质,以实现组织适合植入人。

我们在这篇文章的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢BBSRC的资助博士先生弗雷泽细则。

Materials

Name of the reagent Company Catalogue number Comments
Poly lactic-co-glycolic acid Sigma Aldrich    
Poly lactic acid Sigma Aldrich 81273 Inherent viscosity ~2.0dl/g
Poly ε-caprolactone Sigma Aldrich    
Poly hydroxybutyrate-co-hydroxyvalerate 12:1 Goodfellow 578-446-59 PHB88/PHV12
Dichloromethane Sigma Aldrich or Fisher 270997 or D/1850/17 >99.8% contains 50-150ppm amylene stabiliser
50 multi coloured balloons Wilkinson’s Hardware Stores Ltd. 0105790  
Goat anti-rabbit IgG (FC):FITC AbDserotec STAR121F  
Rabbit anti-human alpha elastin AbDserotec 4060-1060  
Screw Cap GL45 PP 2 Port, pk/2 SLS 1129750  
4′,6-Diamidino-2-phenylindole dihydrochloride Sigma Aldrich  32670  
CellTracker  green CMFDA Invitrogen C7025  
CellTracker  red CMTX Invitrogen C34552  

References

  1. Canton, I., McKean, R., Charnley, M., Blackwood, K., Fiorica, C., Ryan, A., MacNeil, S. Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnology and bioengineering. 105, 396-408 (2010).
  2. Blackwood, K., McKean, R., Canton, I., Freeman, C., Franklin, K., Cole, A., Brook, I., Farthing, P., Rimmer, S., Haycock, J., Ryan, A., MacNeil, S. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials. 29, 3091-3104 (2008).
  3. Yang, F., Maurugan, R., Wang, S., Ramakrishna, S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 26, 2603-2610 (2005).
  4. Sittichokechaiwut, A., Edwards, J. H., Scutt, A. M., Reilly, G. C. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cell. Eur. Cell Mater. 20, 45-57 (2010).
  5. Sill, T. J., von Recum, H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 29 (13), 1989-2006 (2008).
  6. Deitzel, J., Kleinmeyer, J., Harris, D., Beck Tan, N. C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 42, 261-272 (2001).
  7. Fridrikh, S., Yu, J., Brenner, M., Rutledge, G. Controlling the fiber diameter during electrospinning. Physical review letters. 90, 1-4 (2003).
  8. Fong, H., Chun, I., Reneker, D. Beaded nanofibers formed during electrospinning. Polymer. 40 (16), 4585-4592 (1999).
  9. Selim, M., Bullock, A. J., Blackwood, K. A., Chapple, C. R., MacNeil, S. Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int. 107 (2), 296-302 (2010).
  10. Tong, H. -. W., Wang, M. An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers. Journal of Applied Polymer Science. 120 (3), 1694-1706 (2011).
  11. Tong, H. -. W., Wang, M. Electrospinning of poly(hydroxybutyrate-co-hydroxyvalerate) fibrous tissue engineering scaffolds in two different electric fields. Polymer Engineering & Science. 51 (7), 1325-1338 (2011).
  12. Retzepi, M., Donos, N. Guided Bone Regeneration: biological principle and therapeutic applications. Clinical oral implants research. 21, 567-576 (2010).
  13. Moreau, J., Caccamese, J., Coletti, D., Sauk, J., Fisher, J. Tissue engineering solutions for cleft palates. Journal of oral maxillofacial. 65, 2503-2511 (2007).
  14. Yang, F., Both, S., Yang, X., Walboomers, X., Jansen, J. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta biomaterialia. 5, 3295-3304 (2009).
  15. Yoshimoto, H., Shin, Y., Terai, H., Vacanti, J. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 24, 2077-2082 (2003).
  16. Telemeco, T., Ayres, C., Bowlin, G., Wnek, G., Boland, E., Cohen, N., Baumgarten, C., Mathews, J., Simpson, D. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta biomaterialia. 1, 377-385 (2005).
check_url/kr/4172?article_type=t

Play Video

Cite This Article
Bye, F. J., Wang, L., Bullock, A. J., Blackwood, K. A., Ryan, A. J., MacNeil, S. Postproduction Processing of Electrospun Fibres for Tissue Engineering. J. Vis. Exp. (66), e4172, doi:10.3791/4172 (2012).

View Video