Summary

क्रोमोजोम नकल फ्लोरोसेंट के साथ संयुक्त समय<em> सीटू में</em> संकरण

Published: December 10, 2012
doi:

Summary

गुणसूत्र प्रतिकृति समय के विश्लेषण के लिए एक मात्रात्मक विधि का वर्णन है. विधि फ्लोरोसेंट के साथ संयोजन में BrdU निगमन का इस्तेमाल<em> स्वस्थानी में</em> संकरण (मछली) स्तनधारी गुणसूत्रों की प्रतिकृति समय का आकलन. इस तकनीक rearranged और संयुक्त राष्ट्र rearranged क्रोमोसोम के एक ही कोशिका के भीतर प्रत्यक्ष तुलना के लिए अनुमति देता है.

Abstract

Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional ‘chromosome engineering’ studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5.

Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within the same cell, and was adapted from6. In addition, this method allows for the unambiguous identification of chromosomal rearrangements that correlate with changes in replication timing that affect the entire chromosome. This method has advantages over recently developed high throughput micro-array or sequencing protocols that cannot distinguish between homologous alleles present on rearranged and un-rearranged chromosomes. In addition, because the method described here evaluates single cells, it can detect changes in chromosome replication timing on chromosomal rearrangements that are present in only a fraction of the cells in a population.

Protocol

1. BrdU निगमन (टर्मिनल लेबल) बारे में एक 150 मिमी ऊतक संस्कृति डिश 24 BrdU के अलावा पहले घंटा में 70% संगम प्लेट कोशिकाओं. ताजा पूरा उपयुक्त समय बिंदुओं पर 20 ग्राम / एमएल BrdU (सिग्मा) फसल के लिए पहले वाले मीडिया के…

Representative Results

प्रतिकृति मानव गुणसूत्र 6 के लिए समय विश्लेषण का एक उदाहरण चित्रा 2 में दिखाया गया है. युक्त कोशिकाओं का एक विलोपन ASAR6 4 जीन, 6q16.1 में स्थित BrdU 5 घंटे के लिए खुल गए थे, mitotic कोशिकाओं के लिए काटा और एक गुण?…

Discussion

गुणसूत्र फैलता की तैयारी यहाँ वर्णित सफल परख प्रतिकृति – समय के लिए एक महत्वपूर्ण कदम है. एक colcemid pretreatment कदम का समावेश hypotonic उपचार से पहले आवृत्ति में और mitotic कोशिकाओं के प्रसार में सहायता कर सकते हैं. हम आम तौर …

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम राष्ट्रीय कैंसर संस्थान, CA131967 से एक अनुदान द्वारा समर्थित किया गया.

Materials

Name of Reagent Company Catalogue Number Comments (optional)
Anti-BrdU-FITC Roche Millipore 11202593001 MAB326F 50 μg/μl
Nick Translation Kit Abbott Molecular (Vysis) 07J00-0001  
Spectrum Orange dUTP Abbott Molecular (Vysis) 02N33-050  
CEP Abbott Molecular (Vysis) Varies  
LSI/WCP hybridization buffer Abbott Molecular (Vysis) 06J67-011  
CEP hybridization buffer Abbott Molecular (Vysis) 07J36-001  
Chromosome paints MetaSystems Group D-14NN-050-TR  
Olympus BX61 Fluorescent Microscope Olympus BX61TRF-1-5  
Microscope imaging software system Applied Imaging Cytovision 3.93.1  
Digital Camera Olympus UCMAD3  
     

IN SITU HYBRIDIZATION RECIPES
Formamide Solutions
70% Formamide/2x SSC

35 ml Formamide* (Sigma)
10 ml 10x SSC
5 ml d2H20
pH to 7.0 with HCl (Sigma)

* It is important to use formamide that has been stored at -20 °C. Prolonged room temperature storage will generate formic acid and the pH will be too low.

50% Formamide/2x SSC

25 ml formamide (Sigma)
10 ml 10x SSC
15 ml dH2O
pH to 7.0 with HCl (Sigma)

20x SSC, 4 L

702 g NaCl (Sigma)
358 g Na Citrate (Sigma)
dH2O to volume

PN Buffer [0.1 M NaP04 0.1% NP_40 (Sigma)]

Make a 0.1 M solution each of sodium phosphate (Filter sterilize and store in 500 ml aliquots).

0.1 M NaH2P04 , 1 L

13.8 g NaH2P04 (Sigma):
dH2O to volume

0.1 M NaH2P04 1 L

14.2 g NaH2P04 (Sigma)
dH2O to volume.

PN: Adjust pH of 0.1 M Na2HP04 to pH 8.0 with .1 M NaH2P04. Filter sterilize and add 1 ml of NP-40.

PNM 50 ml

1.25 g Non-fat dry milk (Sigma)
25 ml PN buffer (Recipe above)

Mix for 15-20 min with constant stirring. Spin 2 times at 400 x g for 10 min. Use supernatant, and make sure not to disturb precipitated milk proteins.

References

  1. Payer, B., Lee, J. T. X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42, 733-772 (2008).
  2. Breger, K. S., Smith, L., Turker, M. S., Thayer, M. J. Ionizing radiation induces frequent translocations with delayed replication and condensation. 암 연구학. 64, 8231-8238 (2004).
  3. Smith, L., Plug, A., Thayer, M. Delayed Replication Timing Leads to Delayed Mitotic Chromosome Condensation and Chromosomal Instability of Chromosome Translocations. Proc. Natl. Acad. Sci. U.S.A. 98, 13300-13305 (2001).
  4. Stoffregen, E. P., Donley, N., Stauffer, D., Smith, L., Thayer, M. J. An autosomal locus that controls chromosome-wide replication timing and mono-allelicexpression. Hum. Mol. Genet. 20, 2366-2378 (2011).
  5. Breger, K. S., Smith, L., Thayer, M. J. Engineering translocations with delayed replication: evidence for cis control of chromosome replication timing. Hum. Mol. Genet. 14, 2813-2827 (2005).
  6. Camargo, M., Cervenka, J. Patterns of DNA replication of human chromosomes. II. Replication map and replication model. Am. J. Hum. Genet. 34, 757-780 (1982).
  7. Cohen, S. M., Cobb, E. R., Cordeiro-Stone, M., Kaufman, D. G. Identification of chromosomal bands replicating early in the S phase of normal human fibroblasts. Exp. Cell Res. 245 (98), 321-329 (1998).
  8. Diaz-Perez, S., et al. The element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in the mouse. 유전학. 171, 663-672 (2005).
  9. Diaz-Perez, S. V., et al. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. 유전학. 174, 1115-1133 (2006).
  10. Salic, A., Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U.S.A. 105, 2415-2420 (2008).
  11. Schlesinger, S., Selig, S., Bergman, Y., Cedar, H. Allelic inactivation of rDNA loci. Genes Dev. 23, 2437-2447 (2009).
  12. Branzei, D., Foiani, M. The checkpoint response to replication stress. DNA Repair (Amst). 8, 1038-1046 (2009).
check_url/kr/4400?article_type=t

Play Video

Cite This Article
Smith, L., Thayer, M. Chromosome Replicating Timing Combined with Fluorescent In situ Hybridization. J. Vis. Exp. (70), e4400, doi:10.3791/4400 (2012).

View Video