Summary

使用骨髓源性巨噬细胞巨噬细胞极化的调查

Published: June 23, 2013
doi:

Summary

本文介绍了一种自适应容易容易<em>在体外</em>模型,探讨巨噬细胞极化。在存在下GM-CSF/M-CSF,从骨髓中的造血干/祖细胞定向分化成单核细胞,由M1或M2的刺激。激活状态可以跟踪的细胞表面抗原,基因表达和细胞信号转导通路的变化。

Abstract

本文介绍了一种容易容易适应体外模型研究巨噬细胞极化。在存在下GM-CSF/M-CSF,从骨髓中的造血干/祖细胞定向分化成单核细胞,由M1或M2的刺激。激活状态可以跟踪的细胞表面抗原,基因表达和细胞信号转导通路的变化。

Introduction

有别于经典的炎症反应,巨噬细胞浸润组织通常显示的极化激活状态,起着至关重要的作用,在调节宿主组织的生理功能1-8。刺激后,巨噬细胞活化可以分为经典(M1)和替代(M2)激活2,4,9。 M1巨噬细胞活化取决于Toll样受体(TLRs)和激活核因子κB(NFκB)/ C-Jun氨基末端激酶1(JNK1),导致生产的炎性细胞因子,如TNF-α和IL- 1β,诱导型一氧化氮合酶的激活,导致产量增加的活性氧物种,如氮化氧化氮(NO)10,11。与此相反,M2巨噬细胞的招募的活化PPARγ,PPARδ,或IL-4-STAT6通路,导致替代,消炎(M2)的激活与甘露糖受体上调CD206和精氨酸酶1(Arg1的)6,12 – 14 </ SUP>。

目前骨髓衍生的巨噬细胞(BMDM),的一个理想的体外模型了解的机制,活化的巨噬细胞极化控制15。具体而言,M1巨噬细胞的激活可以由脂多糖(LPS)的刺激被诱导,而M2巨噬细胞,可诱导的IL-4和/或IL-13的偏振。成熟骨髓来源的巨噬细胞和活化的巨噬细胞,通过流式细胞术分析,可确定表面抗原的表达,包括F4/80的细胞CD11b,CD11c的,CD206,CD69,CD80和CD86的9,16,17。此外,在细胞因子的产生和细胞与巨噬细胞的极化相关的信号转导通路的变化可以测量通过定量RT-PCR和免疫印迹分别。总之,小鼠骨髓来源的巨噬细胞可以作为一个相关的模型来研究在体外巨噬细胞的极化

Protocol

1。骨髓细胞的分离隔离6-8周龄小鼠的股骨和胫骨,用清水冲洗干净的头发和然后剖开骨头。 使用21G针和10毫升注射器,冲洗出来的骨髓成冷PBS +2%热灭活胎牛血清(FBS)(3-5毫升/鼠标)。 通过21G针4-6次通过骨髓细胞分解。 通过细胞通过一个70微米的细胞过滤去除细胞团块,骨骼,头发和其他细胞/组织。 加入3体积的NH 4 Cl溶液(0.8%NH 4 Cl溶液?…

Representative Results

BMDM生成过程的示意说明,提出了( 图1)。在第7天的CD11b + F4/80 +细胞占95%〜99%( 图2)时,可以观察到成熟的巨噬细胞的高纯度。可以检查使用抗CD11b抗体,F4/80偏光巨噬细胞,CD11c和CD206随​​后通过流式细胞仪分析。 如图3所示,被检测为M1巨噬细胞细胞CD11b + F4/80 + CD11c +细胞CD206-细胞(Q2),而M2巨噬细胞细胞CD11b + F4/80 +的CD11c-CD206 +细胞(Q4)。可以确?…

Discussion

我们在这里报告一个简单而诱导激活巨噬细胞来源于骨髓祖细胞在体外容易适应的过程。此过程可用于调查负责的巨噬细胞极化机制。成熟的巨噬细胞获得使用该协议平均为95%至99%的纯度,需要没有额外的纯化程序。要调查的特定基因的功能利益在巨噬细胞的极化,异位表达或基因特异性敲除的上下文中,可以进行以下的转染的细胞在第7天。此协议也将提供一个7天的培养窗口中的某些?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

支持这项工作是由美国心脏协会(BGIA 7850037周北雁博士)。

Materials

Name of Reagent/Material Company Catalog Number Comments
IMDM Thermo Scientific SH30259.01
Fetal bovine serum Invitrogen 10438-026
Murine GM-CSF PeproTech 315-03
NH4Cl StemCell Technologies 7850
L-929 ATCC CCL-1
70 μm cell strainer BD Biosciences 352350
10 x PBS Thermo Scientific AP-9009-10
Anti-mouse CD11b-APC eBioscience 17-0112-81
Anti-mouse F4/80-FITC eBioscience 11-4801-81
Anti-mouse CD69-PE eBioscience 12-0691-81
Anti-mouse CD86-PE eBioscience 12-0862-81
Propidium Iodine Invitrogen P3566

References

  1. Meng, Z. X., Wang, G. X., Lin, J. D. A microrna circuitry links macrophage polarization to metabolic homeostasis. Circulation. , (2012).
  2. Lumeng, C. N., Bodzin, J. L., Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175-184 (2007).
  3. Gordon, S., Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953-964 (2005).
  4. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23-35 (2003).
  5. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36-46 (2010).
  6. Odegaard, J. I., Ricardo-Gonzalez, R. R., Goforth, M. H., Morel, C. R., Subramanian, V., Mukundan, L., Eagle, A. R., Vats, D., Brombacher, F., Ferrante, A. W., Chawla, A. Macrophage-specific pparg controls alternative activation and improves insulin resistance. Nature. 447, 1116-1120 (2007).
  7. Odegaard, J. I., Ricardo-Gonzalez, R. R., Red Eagle, A., Vats, D., Morel, C. R., Goforth, M. H., Subramanian, V., Mukundan, L., Ferrante, A. W., Chawla, A. Alternative m2 activation of kupffer cells by ppard ameliorates obesity-induced insulin resistance. Cell Metabolism. 7, 496-507 (2008).
  8. Vats, D., Mukundan, L., Odegaard, J. I., Zhang, L., Smith, K. L., Morel, C. R., Greaves, D. R., Murray, P. J., Chawla, A. Oxidative metabolism and pgc-1[beta] attenuate macrophage-mediated inflammation. Cell Metabolism. 4, 13-24 (2006).
  9. Mosser, D. M., Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8, 958-969 (2008).
  10. Arkan, M. C., Hevener, A. L., Greten, F. R., Maeda, S., Li, Z. -. W., Long, J. M., Wynshaw-Boris, A., Poli, G., Olefsky, J., Karin, M. Ikk-b links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191-198 (2005).
  11. Saberi, M., Woods, N. -. B., de Luca, C., Schenk, S., Lu, J. C., Bandyopadhyay, G., Verma, I. M., Olefsky, J. M. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 10, 419-429 (2009).
  12. Kang, K., Reilly, S. M., Karabacak, V., Gangl, M. R., Fitzgerald, K., Hatano, B., Lee, C. -. H. Adipocyte-derived th2 cytokines and myeloid ppard regulate macrophage polarization and insulin sensitivity. Cell Metabolism. 7, 485-495 (2008).
  13. Bouhlel, M. A., Derudas, B., Rigamonti, E., Dievart, R., Brozek, J., Haulon, S., Zawadzki, C., Jude, B., Torpier, G., Marx, N., Staels, B., Chinetti-Gbaguidi, G. Pparg activation primes human monocytes into alternative m2 macrophages with anti-inflammatory properties. Cell Metabolism. 6, 137-143 (2007).
  14. Bronte, V., Zanovello, P. Regulation of immune responses by l-arginine metabolism. Nat. Rev. Immunol. 5, 641-654 (2005).
  15. Zhuang, G., Meng, C., Guo, X., Cheruku, P. S., Shi, L., Xu, H., Li, H., Wang, G., Evans, A. R., Safe, S., Wu, C., Zhou, B. A novel regulator of macrophage activation: Mir-223 in obesity-associated adipose tissue inflammation. Circulation. 125, 2892-2903 (2012).
  16. Kradin, R. L., McCarthy, K. M., Preffer, F. I., Schneeberger, E. E. Flow-cytometric and ultrastructural analysis of alveolar macrophage maturation. J. Leukoc. Biol. 40, 407-417 (1986).
  17. Stein, M., Keshav, S., Harris, N., Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287-292 (1992).
  18. Strassmann, G., Bertolini, D. R., Kerby, S. B., Fong, M. Regulation of murine mononuclear phagocyte inflammatory products by macrophage colony-stimulating factor. Lack of il-1 and prostaglandin e2 production and generation of a specific il-1 inhibitor. J. Immunol. 147, 1279-1285 (1991).
  19. Biswas, S. K., Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 11, 889-896 (2010).
  20. Sica, A., Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 122, 787-795 (2012).
check_url/kr/50323?article_type=t

Play Video

Cite This Article
Ying, W., Cheruku, P. S., Bazer, F. W., Safe, S. H., Zhou, B. Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages. J. Vis. Exp. (76), e50323, doi:10.3791/50323 (2013).

View Video