Summary

评估隔离肺泡巨噬细胞的激光共聚焦显微镜抗真菌活性

Published: July 09, 2014
doi:

Summary

一种方法来评估分离的小鼠肺泡巨噬细胞,激光共聚焦显微镜,以控制吞噬曲霉菌孢子的生长的能力。

Abstract

肺是其中的宿主细胞经常接触到的微生物和微生物产品的接口。肺泡巨噬细胞是遇到吸入真菌和其它微生物的一线吞噬细胞。巨噬细胞和其他免疫细胞识别曲霉图案由病原体识别受体,并启动下游的炎症反应。吞噬细胞NADPH氧化酶产生活性氧中间体(投资回报)​​,是宿主防御的关键。虽然NADPH氧化酶是至关重要的中性粒细胞介导的宿主防御1 – 3,NADPH氧化酶的巨噬细胞中的重要性是不明确的。本研究的目标是界定在介导针对A.宿主防御NADPH氧化酶的巨噬细胞中的具体作用曲霉 。我们发现,在肺泡巨噬细胞NADPH氧化酶控制吞噬A的增长烟曲霉菌孢子4。在这里,我们描述了一种用于评估老鼠的能力lveolar巨噬细胞(AMS)来控制细胞吞噬黑曲霉的孢子(分生孢子)的生长。肺泡巨噬细胞进行染色体内并通过支气管肺泡灌洗(BAL)从小鼠十天后分离。巨噬细胞被镀到玻璃盖玻片上,然后种入绿色荧光蛋白(GFP)表达A.烟曲霉菌孢子。在指定的时间,将细胞固定和完好的巨噬细胞与吞噬孢子的数量通过共聚焦显微镜进行评估。

Introduction

肺泡巨噬细胞是遇到吸入微生物一线吞噬细胞。巨噬细胞识别图案由病原体识别受体,摄取并限制吸入孢子(分生孢子)的生长,并启动炎症反应。吞噬细胞NADPH氧化酶转化分子氧超氧阴离子和下游活性氧中间体(投资回报)​​。慢性肉芽肿病(CGD)是NADPH氧化酶的特征是严重的细菌和真菌感染和由过度的炎症反应的一种遗传性疾病。

虽然NADPH氧化酶是至关重要的中性粒细胞介导的宿主防御1 – 3,NADPH氧化酶的巨噬细胞中的重要性是不明确的。此前的研究表明,肺泡巨噬细胞摄取并杀死曲霉菌孢子,而中性粒细胞主要针对菌丝阶段5。但是,也出现了相互矛盾的雷苏尔TS作为NADPH氧化酶在巨噬细胞中控制A的生长的作用曲霉孢子6,7。

该方法的目标是界定在介导针对A.宿主防御NADPH氧化酶的巨噬细胞中的具体作用烟曲霉菌孢子。我们发现,在肺泡巨噬细胞NADPH氧化酶控制吞噬A的增长烟曲霉菌孢子4。为了最准确地模拟主机对吸入真菌,我们使用了支气管肺泡灌洗收集肺泡巨噬细胞的未刺激小鼠紧随牺牲。使用隔离的肺泡巨噬细胞使我们能够专注于自己的抗真菌活性在没有其他免疫细胞( 中性粒细胞招募), 在体内防御曲霉 。在该方法中,肺泡巨噬细胞进行染色事先体内收获,以尽量减少收获后的操作量。</ P>

另一个优点这个协议是使用GFP表达A曲霉菌株。这种真菌表达从分生孢子阶段GFP通过菌丝阶段,并没有必要进一步染色。以获得具有更详细的图像,我们选择了共焦显微镜使从所获得的图像的三维结构的重建。三维重建给出菌丝生长周围,而不是在或通过巨噬细胞之间进行区分的能力。分生孢子也可以精确地辨别作为细胞内与细胞外。

Protocol

动物在这项研究中执行的所有程序批准了动物护理和使用委员会在罗斯威尔公园癌症研究所和遵守所有州,联邦和卫生法规国家机构。 1, 在体内巨噬细胞标记注意:PHK26是将要采取由吞噬细胞在血液循环和在组织中静脉内给药(IV)时,亲脂性染料。 PKH26用于体内标记,以减少收获后处理的巨噬细胞的数量。 PKH-26具有稳定地积聚在肺泡巨噬?…

Representative Results

从未经刺激的小鼠收集肺泡巨噬细胞通过BAL将导致基于细胞学一个纯度> 95%的人口​​。在3和7小时( 图2)的时间点之前的真菌生长的菌丝阶段,并允许对分生孢子的基因型之间的吞噬效率的比较。其中基因型可以是关于抑制吞噬的分生孢子于组织侵入菌丝阶段的过渡( 图3)的能力进行比较,在14小时的时间点是。完好的巨噬细胞可以通过共聚焦显微镜的基础上…

Discussion

使用这种方法进行体外分析巨噬细胞的抗真菌活性连同体内真菌的挑战,我们先前表明,在巨噬细胞NADPH氧化酶起着抵御A的重要作用4。使用隔离的肺泡巨噬细胞使我们能够专注于他们的抗真菌活性在没有其他免疫细胞( 中性粒细胞招募), 在体内防御曲霉

各种可视化策略已经被用于评价巨噬细胞的抗真菌活性<e…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由国家过敏与感染疾病格兰特R01AI079253(以BHS)的支持,以及由美国国家癌症研究所癌症中心支援津贴CA016056到罗斯威尔公园癌症研究所。

Materials

PKH26 Red Fluorescent Cell Linker Kit for General Cell Membrane Labeling Sigma PKH26GL-1KT
2,2,2 Tribromoethanol Sigma T48402 Used to make AvertinAnesthetic
2-methyl-2-butanol Sigma A-1685 Used to make AvertinAnesthetic
Dulbecco's Phosphate Buffered Saline (without calcium and magnesium) Corning 21-031-CV
NH4CL Sigma A0171 Used to make ACK red cell lysis buffer
KHCO3 Sigma P91444 Used to make ACK red cell lysis buffer
EDTA Sigma E6758 Used to make ACK red cell lysis buffer
22 gauge X 1.00 inch i.v. catheter BD  381523 Insyte Autoguard Winged
insulin syringes
6 ml syringes
4-way stopcock Fisher Scientific 50-700-077
suture thread
50 ml conical centrifuge tubes
gauze sponges (4 inch square)
RPMI 1640 with L-glutamine Corning 10-040-CV
Fetal Bovine Serum Hyclone SH30396.03 heat inactivated
Hema 3 Stain Set Fisher Scientific 22-122-911
Cytoseal 60 Thermo Scientific 8310-4
Sabouraud Brain Heart Infusion Agar with Chloramphenicol and Gentamicin Slants BD  297252
Aspergillus fumigatous strain expressing green fluorescent protein provided by Dr Margo Moore, Simon Fraser University, Burnaby, BC, Canada
100 micron Cell Strainers BD Falcon 64753-00
scissors
forceps
Biological Safety Cabinet Class II
Sorval ST40 Centrifuge with swing bucket rotor
Leica DM1000 light microscope
Hemocytometer
Cytospin 2 centrifuge Thermo Scientific
Cell Culture Incubator 37 °C, 5%  CO2
22X22 mm micro cover glass VWR 48366-227 glass coverslips
6 well Cell Culture Plates Corning 3506
10% Neutral Buffered Formalin VWR BDH0502-1LP
Vectashield Mounting medium with DAPI Vector Laboratories H-1200
Leica TCS SP2 system with a laser point scanner Mounted on DMIRE2 fluorescence microscope

References

  1. Reeves, E. P., et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 416, 291-297 (2002).
  2. Bianchi, M., et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 114, 2619-2622 (2009).
  3. Vethanayagam, R. R., et al. Role of NADPH oxidase versus neutrophil proteases in antimicrobial host defense. PLoS One. 6, (2011).
  4. Grimm, M. J., et al. Monocyte- and Macrophage-Targeted NADPH Oxidase Mediates Antifungal Host Defense and Regulation of Acute Inflammation in Mice. The Journal of Immunology. 190, 4175-4184 (2013).
  5. Schaffner, A., Douglas, H., Braude, A. Selective protection against conidia by mononuclear and against mycelia by polymorphonuclear phagocytes in resistance to Aspergillus. Observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest. 69, 617-631 (1982).
  6. Philippe, B., et al. Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun. 71, 3034-3042 (2003).
  7. Cornish, E. J., et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase-independent resistance to Aspergillus fumigatus in alveolar macrophages. J Immunol. 180, 6854-6867 (2008).
  8. Jennings, J. H., Linderman, D. J., Hu, B., Sonstein, J., Curtis, J. L. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am J Respir Cell Mol Biol. 32, 108-117 (2005).
  9. Davidson, B. A., et al. DISCRIMINATION OF RESIDENT AND INFILTRATED ALVEOLAR MACROPHAGES BY FLOW CYTOMETRY IN INFLUENZA A VIRUS-INFECTED MICE. Experimental Lung Research. 31, 323-339 (2005).
  10. Gelderman, K. A., et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J Clin Invest. 117, 3020-3028 (2007).
  11. Pizzolla, A., et al. Reactive oxygen species produced by the NADPH oxidase 2 complex in monocytes protect mice from bacterial infections. J Immunol. 188, 5003-5011 (2012).
  12. Luther, K., et al. Characterisation of the phagocytic uptake of Aspergillus fumigatus conidia by macrophages. Microbes and Infection. 10, 175-184 (2008).
  13. Geunes-Boyer, S., et al. Surfactant Protein D Increases Phagocytosis of Hypocapsular Cryptococcus neoformans by Murine Macrophages and Enhances Fungal Survival. Infection and Immunity. 77, 2783-2794 (2009).
  14. García-Rodas, R., González-Camacho, F., Rodríguez-Tudela, J. L., Cuenca-Estrella, M., Zaragoza, O. The Interaction between Candida krusei and Murine Macrophages Results in Multiple Outcomes, Including Intracellular Survival and Escape from Killing. Infection and Immunity. 79, 2136-2144 (2011).
  15. Ryan, L. K., Vermeulen, M. W. Alveolar macrophages from C3H/HeJ mice show sensitivity to endotoxin. Am J Respir Cell Mol Biol. 12, 540-546 (1995).
  16. Redente, E. F., et al. Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation. J Leukoc Biol. 88, 159-168 (2010).
  17. Schaffner, A., Douglas, H., Braude, A. I., Davis, C. E. Killing of Aspergillus spores depends on the anatomical source of the macrophage. Infect Immun. 42, 1109-1115 (1983).
  18. Goodridge, H. S., et al. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J Immunol. 182, 1146-1154 (2009).
check_url/kr/51678?article_type=t

Play Video

Cite This Article
Grimm, M. J., D’Auria, A. C., Segal, B. H. Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy. J. Vis. Exp. (89), e51678, doi:10.3791/51678 (2014).

View Video