Summary

多孔硅微粒进行交付的siRNA治疗的

Published: January 15, 2015
doi:

Summary

递送仍然是治疗性的实施的小干扰RNA(siRNA)的主要挑战。该协议涉及使用多官能的和生物相容siRNA递送平台,其中包括精氨酸和聚乙烯亚胺接枝的多孔硅微粒。

Abstract

Small interfering RNA (siRNA) can be used to suppress gene expression, thereby providing a new avenue for the treatment of various diseases. However, the successful implementation of siRNA therapy requires the use of delivery platforms that can overcome the major challenges of siRNA delivery, such as enzymatic degradation, low intracellular uptake and lysosomal entrapment. Here, a protocol for the preparation and use of a biocompatible and effective siRNA delivery system is presented. This platform consists of polyethylenimine (PEI) and arginine (Arg)-grafted porous silicon microparticles, which can be loaded with siRNA by performing a simple mixing step. The silicon particles are gradually degraded over time, thereby triggering the formation of Arg-PEI/siRNA nanoparticles. This delivery vehicle provides a means for protecting and internalizing siRNA, without causing cytotoxicity. The major steps of polycation functionalization, particle characterization, and siRNA loading are outlined in detail. In addition, the procedures for determining particle uptake, cytotoxicity, and transfection efficacy are also described.

Introduction

小干扰RNA(siRNA)是双链RNA分子,其可以抑制基因的表达。在最近几年,siRNA的已经开发的新一代,显示在临床应用中1-5治疗潜力以供将来使用biodrugs的。然而,成功实施的siRNA治疗仍然是一个相当大的挑战,由于降解核酸酶,细胞内差摄取,转染效率低,并从核内体/溶酶体5低效的释放。许多这些障碍可以通过递送平台的发展,它可以安全,高效地递送的siRNA到患病组织被克服。相比于病毒载体,非病毒平台提供若干优点,如安全,成本低,易于剪裁。特别是,阳 ​​离子纳米粒子,如聚合物和脂质,已证明对于siRNA递送3是有用的。

此前,我们已经开发出一种盘状博士微克递送系统,被称为多级向量(MSV)。这种平台是基于顺序阶段,其中一个车辆从另一个释放。第一阶段是车辆从可生物降解的多孔硅(PSI)制成的微粒,而第二阶段的车辆是纳米颗粒装载有药物或造影剂6,7。的纳米颗粒,其被嵌入在PSI材料,正 ​​在逐渐释放在Si降低8。用Si粒子的一个好处是,在形态和表面特性可以很容易地进行调整,以达到最佳的生物分布和药物释放。最近,成功使用MSV平台用于siRNA的脂质体对肿瘤组织的递送的结果显示在一个卵巢癌和乳腺癌的小鼠模型9,10。

在这项工作中,我们已经制备用于siRNA基于所述MSV平台的原理的通用输送系统。此递送系统的效力先前已被证明我们荷兰国际集团的不同siRNA分子11。该系统是一种聚阳离子官能多孔硅(PCPS)载体,包含的pSi接枝聚乙烯亚胺(PEI)和精氨酸(Arg)的。 PEI可在形成具有siRNA的静电相互作用帮助,而精氨酸和PSI可以起到降低PEI的毒性,如先前demonstarted 11。另外,PEI的存在可以帮助细胞内摄取和内体逃逸,而微粒的pSi使siRNA的保护和持续释放。 PSI的颗粒在生理条件下逐渐降低,由此导致的Arg-PEI / siRNA的纳米颗粒( 图1),其具有不同的形态,并具有较窄的粒径分布11的形成。对于有关PCPS / siRNA的系统的稳定性的细节,请参考研究由Shen 等人 11。此PCPS平台不同于常规MSV,由于第二阶段的纳米粒子最初不prese核苷酸在载体中,但形成在时间作为第一级托架降解11,12。所述PCPS系统的siRNA的装载效率,细胞毒性和基因沉默效率已在体外进行了评价。使用的siRNA针对共济失调毛细血管扩张症突变(ATM)的原癌基因,其参与DNA修复10转染效率进行了测量。先前,ATM的抑制已经显示降低肿瘤生长的乳腺癌模型10。

Protocol

1. PCPS粒子的制备氧化在过氧化氢的30%溶液的非官能化的多孔硅的颗粒在95℃下2小时。在2%的异丙醇(3-氨基丙基)三乙氧基硅烷溶液2天,在65℃缓慢搅拌下胺化的氧化颗粒。 离心30分钟,将溶液在18800×g离心并在异丙醇和乙醇三次两次洗涤颗粒,利用短暂超声处理,暂停沉淀。执行步骤1.3和1.4,当离开在乙醇溶液中的颗粒。 添加粒子悬浮液( 例如 ,10微升)的已知?…

Representative Results

这个协议描述了使用非病毒递送系统的安全及有效的siRNA转染。 SEM结果显示,该PCPS颗粒是圆柱形的,并有一个直径为2.6微米( 图2A)。颗粒被带正电荷的具有大约8.21的ζ电位( 图2B),从而使静电带负电荷的核苷酸结合。所述PCPS颗粒的不同层的共焦图像证实荧光对照siRNA在多孔硅粒子( 图2C)内加载。从PSI颗粒精氨酸-PEI / siRNA的纳米颗粒的形成和释放被证实…

Discussion

这个协议描述为成功递送的siRNA和转染到细胞中的方法。特别是,siRNA的有交付通过使用多功能平台,由聚阳离子官能化的pSi粒子来实现的。使用的siRNA疗法具有很大的潜力, 例如 ,癌症治疗,各种癌基因可以高特异性有针对性。因此,存在一个需求,开发siRNA递送车辆,其可以减轻的siRNA治疗的挑战。总之,我们已经提出了一个协议,表明承诺的安全和高效地交付的siRNA。但是,也有应执?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge financial support from Houston Methodist Research Institute, the National Natural Science Foundation of China (Nos., 21231007 and 21121061), the Ministry of Education of China (Nos., 20100171110013 and 313058), the National Basic Research Program of China (973 Program No. 2014CB845604), and the Fundamental Research Funds for the Central Universities.

Materials

Name of the Material/Equipment Company/Institution Catalog Number Comments/Description
Polyethylenimine (PEI), branched Sigma-Aldrich 408727 Average molecular weight ~25,000 Da
L-Arginine Sigma-Aldrich A5006 Reagent grade, ≥98%
Boc-Asp-OH Sigma-Aldrich 408-468 99%
(3-​Aminopropyl)​triethoxysilane Sigma-Aldrich 440140 99%
Hydrogen peroxide solution Sigma-Aldrich 216763 30 wt. % in H2O
Sulfuric acid Sigma-Aldrich 339741 100.00%
Isopropyl alcohol Sigma-Aldrich W292907 ≥99.7%
Ethanol Sigma-Aldrich 459844 ≥99.5% 
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) Sigma-Aldrich 03449 ≥99%
Albumin from bovine serum Sigma-Aldrich A7030-10G Blocking agent
Ataxia-telangiectasia mutated siRNA  Sigma-Aldrich Designed in-house
Tris Acetate-EDTA buffer Sigma-Aldrich T9650 For DNA agarose gel electrophoresis
Penicillin-Streptomycin Sigma-Aldrich P4333
Fetal Bovine Serum Sigma-Aldrich F2442
TWEEN 20 Sigma-Aldrich P1379 Polyethylene glycol sorbitan monolaurate
2-Mercaptoethanol Sigma Aldrich M6250 For Western blot
Sodium dodecyl sulfate Sigma-Aldrich L3771
Sodium phosphate monobasic Sigma-Aldrich 71496 For making phosphate buffer 
Sodium phosphate dibasic Sigma-Aldrich 71640 For making phosphate buffer
Anti-Mouse IgG Sigma-Aldrich A4416 Secondary antibody (anti-mouse) for Western blot
N-Hydroxysuccinimide (NHS) Sigma-Aldrich 130672 98%
CELLSTAR 96W Microplate Tissue Culture Treated Clear w/ Lid Greiner Bio-One 655182 96-well plate
10X Tris-Glycine Liquid Li-Cor  928-40010 Transfer buffer for Western blot
Paraformaldehyde solution 4% in PBS  Santa Cruz Sc-281692 Fixation of cells
CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (MTS) Promega G5421 Proliferation assay
Phosphate buffered saline Fisher Scientific BP399-500 10 X Solution
Corning cellgro Dulbecco's Modification of Eagle's (Mod.) Fisher Scientific  MT-15-017-CM Cell culture media, 1X solution
Triton X-100 Fisher Scientific AC21568-2500 Octyl phenol ethoxylate, permeabilization agent
Cover glass Fisher Scientific 12-530C 
Methanol Fisher Scientific  A412-1 For Western blot transfer buffer
Plastic Cuvettes Fisher Scientific  14-377-010  For size measurements using Zetasizer Nano ZS
Molecular BioProducts RNase AWAY Surface Decontaminant Fisher Scientific 14-754-34 Spray for removing RNAse contamination
Agarose Fisher Scientific BP165-25 Low melting point, for running RNA samples
ProLong Gold Antifade Reagent with DAPI  Invitrogen P36935 Antifade reagent with DAPI, nucelus detection
Alexa Fluor 488 Phalloidin Invitrogen A12379 Dissolve 300 units in 1.5 ml methanol, detection of filamentous actin
SYBR Safe DNA Gel Stain Invitrogen S33102 Visualization of RNA
Negative Control siRNA Qiagen 1022076 Control siRNA
AllStars Neg. siRNA AF 555 Qiagen 1027294 Fluorescent control siRNA
Cell scraper Celltreat 229310
BioLite Multidishes and Microwell Plates Thermo Scientific 130184 6-well plate
Pierce LDS Sample Loading Buffer (4X)  Thermo Scientific 84788 Sample loading buffer for Western blot
Pierce BCS Protein Assay Kit Thermo Scientific 23227 Protein quantification assay
Halt Protease Inhibitor Single-Use Cocktails (100X) Thermo Scientific 78430 Protease inhibitor cocktail, use at 1X
M-PER Mammalian Protein Extraction Reagent Thermo Scientific  78501 Protein extraction reagent
Sorvall Legend Micro 21R Thermo Scientific 75002440 Centrifuge
Beta Actin Antibody  Thermo Scientific  MA1-91399 β-actin primary antibody (from mouse) for western blor
6X TriTrack DNA Loading Dye Thermo Scientific R1161 DNA loading dye
Nuclease-Free Water  Life Technologies AM9938
Non-Fat Dry Milk Lab Scientific M0841 For Western blot
2-well BD Falcon culture slides  BD Biosciences 354102 2-well culture slides
Amersham ECL Western blot detection reagent.  GE Healthcare Life Sciences RPN2106 Western blot detection reagent
BA Membranes GE Healthcare Life Sciences 10402096 Nitrocellulose membrane for Wester blot
ATM (D2E2) Rabbit mAb Cell Signaling 2873S ATM primary antibody (from rabbit) for Western blot
Anti-rabbit IgG, HRP-linked Antibody Cell Signaling  7074 Secondary antibody (anti-rabbit) for Western blot 
Folded capillary cells Malvern  DTS 1061 For zeta potentail measurements using Zetasizer Nano ZS
MDA-MB-231 cell line ATCC HTB-26 Mammary Gland/Breast
12% Mini-PROTEAN TGX Gel Bio-rad 456-1043  For Western blot
Biorad PowerPac HC Bio-rad 164-5052 Power supply for electrophoresis
10x Tris/Glycine/SDS Buffer Bio-rad 161-0732 Running buffer for Western blot
Wide Mini-Sub Cell GT Cell Bio-rad 170-4405 Electrophoresis equipment for DNA agarose gel 
Mini-PROTEAN Tetra cell Bio-rad 165-8000 Electrophoresis equipment for Western blot
ChemiDoc XRS+ System with Image Lab Software Bio-rad 170-8265 Image acquisition and analysis software for gels and blots
4" (10cm) dia., 5x7mm diced Silicon Wafer Ted Pella  16007 Silicon waferfor scanning electron microscopy and atomic force microscopy
Thermomixer R Eppendorf 22670107 Shaker 
Isoton II diluent Beckman Coulter 8546719 Isoton diluent
Multisizer 4 Coulter Counter Beckman Coulter A63076 Particle counting analyzer
Non-functionalized porous silicon particles  Microelectronics Research Center, University of Texas at Austin Dicoidal shape. 2.6 μm (diameter) x 0.7 μm (hight), provided in isopropyl alcohol
Zetasizer Nano ZS Malvern Particle analyzer system for size and zeta potential 
Scanning Electron Microscope FEI Particle size and shape 
Atomic Force Microscope Bruker Particle size and shape
Fluo ViewTM 1000 Confocal Microscope Olympus Visualization of fixed and live cells

References

  1. De Fougerolles, A., Vornlocher, H. P., Maraganore, J., Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov. 6 (6), 443-453 (2007).
  2. Rolland, A. Gene medicines: the end of the beginning. Adv Drug Deliv Rev. 57 (5), 669-673 (2005).
  3. Oh, Y. K., Park, T. G. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 61 (10), 850-862 (2009).
  4. Mintzer, M. A., Simanek, E. E. Nonviral vectors for gene delivery. Chem Rev. 109 (2), 259-302 (2009).
  5. Whitehead, K. A., Langer, R., Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 8 (2), 129-138 (2009).
  6. Decuzzi, P., et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 141 (3), 320-327 (2010).
  7. Decuzzi, P., Ferrari, M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials. 29 (3), 377-384 (2008).
  8. Martinez, J. O., Evangelopoulos, M., Chiappini, C., Liu, X., Ferrari, M., Tasciotti, E. Degradation and biocompatibility of multistage nanovectors in physiological systems. J Biomed Mater Res A. 102 (10), 3540-3549 (2014).
  9. Shen, H., et al. Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin Cancer Res. 19 (7), 1806-1815 (2013).
  10. Xu, R., et al. Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small. 9 (9-10), 1799-1808 .
  11. Shen, J., et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano. 7 (11), 9867-9880 (2013).
  12. Zhang, M., et al. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials. 35 (1), 423-431 (2014).
  13. Ozpolat, B., Sood, A. K., Lopez-Berestein, G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med. 267 (1), 44-53 (2010).
  14. Philipp, A., Dehshahri, A., Wagner, A., E, Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem. 19 (7), 1448-1455 (2008).
  15. Hunter, A. C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev. 58 (14), 1523-1531 (2006).
  16. Andrews, P. M., Bates, S. B. Dose-dependent movement of cationic molecules across the glomerular wall. Anat Rec. 212 (3), 223-231 (1985).
  17. Ananta, J. S., et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol. 5 (11), 815-821 (2010).
check_url/kr/52075?article_type=t

Play Video

Cite This Article
Shen, J., Wu, X., Lee, Y., Wolfram, J., Yang, Z., Mao, Z., Ferrari, M., Shen, H. Porous Silicon Microparticles for Delivery of siRNA Therapeutics. J. Vis. Exp. (95), e52075, doi:10.3791/52075 (2015).

View Video