Summary

Atomic force mikroskopi Imaging og Kraft spektroskopi af understøttede lipiddobbeltlag

Published: July 22, 2015
doi:

Summary

We describe a protocol for preparation of supported lipid bilayers and its characterization using atomic force microscopy and force spectroscopy.

Abstract

Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force.

The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes.

Introduction

Atomic force mikroskopi (AFM) genererer et billede af en overflade ved at scanne igennem et område af prøven under anvendelse af en udligger med en meget skarp spids 1. Bevægelsen af ​​cantilever sonder overflade topologi af prøven. AFM har været almindeligt anvendt på biologiske molekyler – herunder proteiner, DNA, og membraner, på grund af sin alsidighed i at analysere faste prøver i luften eller næsten native tilstand i flydende 2-5.

Bortset fra dens høj opløsning billeddannelse kapacitet i nanometerområdet, AFM cantilever virker som en fjeder til at probe interaktion styrker (adhæsions- og frastødning) og mekaniske egenskaber ved prøve 5,6. Dette er kendt som force spektroskopi. I denne tilstand sonden først nærmer prøven og udøver en kraft på det, så trækkes tilbage, indtil den mister kontakt med prøven (figur 1A). De genererede kurver viser kraft som funktion af afstand af cantilever for både appskalle og tilbagetrækning. Adskillige egenskaber, herunder elasticitetsmodulet for at måle stivheden af ​​et materiale, og adhæsionskræfter kan afledes.

Understøttede lipiddobbeltlag er biologiske modelmembraner liggende på toppen af en fast bærer – som regel glimmer, borsilicatglas, smeltet silica, eller oxideret silicium 7. De fremstilles under anvendelse af forskellige teknikker som vesikel deposition, Langmuir-Blodgett fremgangsmåde og spin-coating af 8,9. AFM billeddannelse er blevet anvendt til at følge dannelsen af disse understøttede dobbeltlag 10, og sonde forskellige strukturer dannet af membraner af forskellige sammensætninger 11-15.

Udførelse kraft spektroskopi på understøttede dobbeltlag resulterer i en top i tilgang kurve. Denne top angiver den nødvendige kraft til at gennembore dobbeltlaget, og kaldes gennembrud kraft. Dobbeltlaget Tykkelsen kan også måles ved hjælp af kraft kurve 6. Den typiske gennembrud kraft dobbeltlagområdet mellem 1-50 nN 6. Disse egenskaber afhænger af lipid pakning (flydende eller gel-fase) og struktur (acylkædelængde og grad af umættethed) og ændret af membran-midler 16. Teorien bag brud er blevet forklaret 17 og andre eksperimentelle parametre såsom cantilever blødhed, tip radius og tilgang hastighed påvirker også gennembruddet force 15,16,18. Kraft spektroskopi er blevet anvendt til at analysere egenskaber af forskellige lipidfaser 11,19, sammensætning-afhængige ændringer 12,20, samt virkningerne af andre biomolekyler, lignende peptider, på stabiliteten af membranen 21.

Den flade orientering af understøttede dobbeltlag er fordelagtig til at kombinere AFM med andre metoder såsom overfladeplasmonresonans 22 og fluorescensmikroskopi 11,19 til bedre karakterisere struktur og egenskaber af membraner.

Denne detaljerede video protocol er beregnet til at forberede understøttede lipiddobbeltlag hjælp vesikel deposition og analysere dem med AFM og force spektroskopi. Mens vesikler af forskellige størrelser kan anvendes til fremstilling af dobbeltlag, denne protokol fokuserer på små og store unilamellare vesikler. Understøttede dobbeltlag denne fase adskille i væske bestilt (L o) og flydende uordnede (L d) faser blev karakteriseret 11,15. Membranen består af di-oleoyl-phosphatidylcholin (DOPC), sphingomyelin (SM) og cholesterol (Chol) ved 2: 2: 1 forhold. Denne sammensætning modeller lipidklumperne, som foreslås at opføre sig som platforme vigtige for protein handel og sortering, cellesignalering og andre cellulære processer 23,24.

Protocol

1. Fremstilling af understøttede lipiddobbeltlag (SLB) 11,12,21 Fremstilling af lipidblanding og Multilamellare vesikel Suspensioner Fremstille følgende buffere forhånd. Forbered PBS-puffer ved koncentrationer på 2,7 mM KCI, 1,5 mM KH 2 PO 4, 8 mM Na 2 HPO 4, og 137 mM NaCl, pH 7,2. Forbered SLB (støttet lipiddobbeltlag) buffer ved koncentrationer på 150 mM NaCl, 10 mM HEPES, pH 7,4. Forbered en opløsning af 1 …

Representative Results

Understøttede lipiddobbeltlag sammensat af DOPC: SM: Chol (2: 2: 1) blev afbildet i AFM (figur 2 AC). På grund af lipidsammensætningen, blev SM / Chol-rige L o og DOPC-rige Ld faser observeret. Højden profil fra AFM imaging kan give vigtige oplysninger om membranen struktur. Ved at kigge på højden profil, kan måles dobbeltlaget tykkelse i tilstedeværelse af defekter i membranen (figur 2B) eller højdeforskellen mellem L o / Ld faser ka…

Discussion

SLBs sammensat af DOPC: SM: Chol (2: 2: 1) blev dannet på glimmer efter vesikel adsorption og brud induceret af calciumchlorid. Denne lipidsammensætning adskilt i L D og L o faser. L o fase beriges med sphingomyelin og cholesterol og er mindre fluid / mere tyktflydende (figur 1A) end L d fase 11. Adskillelsen af L o fra L d fase manifesterer sig som cirkulære strukturer hævet over det omgivende (figur 1B, C).</stron…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev støttet af Max Planck Society, det tyske Cancer Research Center, University of Tübingen, og Bundesministerium für Bildung und Forschung (bevilge nr. 0312040).

Vi takker Eduard Hermann for at hjælpe os automatisere analysen af ​​den kraft kurven data og Dr. Jakob Suckale for nærlæsning af dette manuskript.

Materials

1,2-dioleoyl-sn-glycero-3-phosphocholine Avanti Polar Lipids, Inc. 850375P Comes as lyophilized powder in sealed vials. Dissolve all powder in chloroform upon opening. Store extra as dried lipid films, under inert atmosphere, at -20°C. For more information on storage and handling visit http://www.avantilipids.com/index.php?option=com_content&view=article&id=1679&Itemid=398
Sphingomyelin (Brain, Porcine) Avanti Polar Lipids, Inc. 860062P Comes as lyophilized powder in large sealed plastic containers. Dissolve a spatula point of powder powder in chloroform upon opening. Store extra as dried lipid films, under inert atmosphere, at -20°C.  For more information on storage and handling visit http://www.avantilipids.com/index.php?option=com_content&view=article&id=1679&Itemid=398
Cholesterol Avanti Polar Lipids, Inc. 700000P Comes as lyophilized powder in large sealed plastic containers. Dissolve a spatula point of powder powder in chloroform upon opening. Store extra as dried lipid films, under inert atmosphere, at -20°C.  For more information on storage and handling visit http://www.avantilipids.com/index.php?option=com_content&view=article&id=1679&Itemid=398
Sodium chloride (NaCl), 99.8% Carl Roth GmbH + Co. KG 9265.1
Potassium chloride (KCl), 88% Sigma P9541
Sodium hydrogenphosphate (Na2HPO4), >99% AppliChem GmbH A1046
Potassium dihydrogenphosphate (KH2PO4), 99% Carl Roth GmbH + Co. KG 3904.1
Calcium chloride dihydrate (CaCl2), molecular biology grade AppliChem GmbH A4689
HEPES, molecular biology grade AppliChem GmbH A3724
Glass coverslip, 24×60 mm, 1mm thickness Duran Group 2355036
Mica blocks NSC Mica Exports Ltd. These are mica pieces at least 1 sq. Inches in area and thickness randing from 0.006 inches to 0.016 inches. They are cut to a specific size by the company for shipping. Small mica discs can be punched from the mica blocks using the punch and die set.  Always handle mica with gloves or tweezers.
Punch and Die Set Precision Brand Products, Inc 40105
Optical Adhesive Norland Products, Inc. NOA 88 Liquid adhesive that hardens when cured under long wavelength UV light. 
Laboratory Equipment Grease Borer Chemie AG Glisseal N
Liposome Extruder Avestin LiposoFast-Basic As an alternative one can also look at offers from Northern Lipids, Inc.
Adhesive Tape 3M Scotch(R) Magic (TM) Tape 810 (1-inch)
Bath Sonicator Bandelin Sonorex Digitec DT-31 No heating, Frequency: 35 kHz, Ultrasonic Peak Output: 160 W, HF Power: 40 W. http://www.bandelin.com/datenblaetter/dt/DT_31_H_1798d_DE_GB_FR_BANDELIN.pdf
Silicon Nitride AFM Cantilever  Bruker AFM Probes DNP-10 Each cantilever has four tips and their nominal tip radius is 20 nm (with possible maximum at 60 nm). Based on the specifications, we use tip D with resonance frequency of 18 kHz, and nominal spring constant of 0.06 N/m.
AFM JPK JPK Nanowizard II mounted on Zeiss Axiovert 200

References

  1. Binnig, G., Quate, C. F., Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 56, 930-933 (1986).
  2. Hansma, P. K., Elings, V. B., Marti, O., Bracker, C. E. Scanning Tunneling Microscopy and Atomic Force Microscopy: Application to Biology and Technology. Science. 242, 209-216 (1988).
  3. Gaczynska, M., Osmulski, P. A. AFM of biological complexes: What can we learn. Curr, Opin. Colloid In. 13, 351-367 (2008).
  4. Goksu, E. I., Vanegas, J. M., Blanchette, C. D., Lin, W. -. C., Longo, M. L. AFM for structure and dynamics of biomembranes. BBA-Biomembranes. 1788, 254-266 (2009).
  5. Muller, D. J. AFM: A Nanotool in Membrane Biology. Biochemistry-US. 47, 7986-7998 (2008).
  6. Redondo-Morata, L., Giannotti, M. I., Sanz, F., Baró, A. M., Reifenberger, R. G., Sanz, F. . Atomic Force Microscopy in Liquid: Biological Applications. , (2012).
  7. Castellana, E. T., Cremer, P. S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surf. Sci. Rep. 61, 429-444 (2006).
  8. Frederix, P. L. T. M., Bosshart, P. D., Engel, A. Atomic Force Microscopy of Biological Membranes. Biophys. J. 96, 329-338 (2009).
  9. Mennicke, U., Salditt, T. Preparation of Solid-Supported Lipid Bilayers by Spin-Coating. Langmuir. 18, 8172-8177 (2002).
  10. Raviakine, I., Brisson, A. R. Formation of Supported Phospholipid Bilayers from Unilamellar Vesicles Investigated by Atomic Force Microscopy. Langmuir. 16, 1806-1815 (2000).
  11. Chiantia, S., Ries, J., Kahya, N., Schwille, P. Combined AFM and Two-Focus SFCS Study of Raft-Exhibiting Model Membranes. . ChemPhysChem. 7, 2409-2418 (2006).
  12. Unsay, J., Cosentino, K., Subburaj, Y., Garcia-Saez, A. Cardiolipin effects on membrane structure and dynamics. Langmuir. 29, 15878-15887 (2013).
  13. Domènech, &. #. 2. 1. 0. ;., Sanz, F., Montero, M. T., Hernández-Borrell, J. Thermodynamic and structural study of the main phospholipid components comprising the mitochondrial inner membrane. BBA-Biomembranes. 1758, 213-221 (2006).
  14. Domènech, &. #. 2. 1. 0. ;., Morros, A., Cabañas, M. E., Teresa Montero, M., Hernández-Borrell, J. Supported planar bilayers from hexagonal phases. BBA-Biomembranes. 1768, 100-106 (2007).
  15. Garcia-Saez, A. J., Chiantia, S., Schwille, P. Effect of line tension on the lateral organization of lipid membranes. J Biol Chem. 282, 33537-33544 (2007).
  16. Alessandrini, A., Seeger, H. M., Caramaschi, T., Facci, P. Dynamic Force Spectroscopy on Supported Lipid Bilayers: Effect of Temperature and Sample Preparation. Biophys. J. 103, 38-47 (2012).
  17. Butt, H. -. J., Franz, V. Rupture of molecular thin films observed in atomic force microscopy I. Theory. Physical Review E. 66, 031601 (2002).
  18. Garcia-Manyes, S., Oncins, G., Sanz, F. Effect of Temperature on the Nanomechanics of Lipid Bilayers Studied by Force Spectroscopy. Biophys. J. 89, 4261-4274 (2005).
  19. Chiantia, S., Kahya, N., Schwille, P. Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir. 23, 7659-7665 (2007).
  20. Canale, C., Jacono, M., Diaspro, A., Dante, S. Force spectroscopy as a tool to investigate the properties of supported lipid membranes. Microsc. Res. Techniq. 73, 965-972 (2010).
  21. García-Sáez, A. J., Chiantia, S., Salgado, J., Schwille, P. Pore Formation by a Bax-Derived Peptide: Effect on the Line Tension of the Membrane Probed by AFM. Biophys. J. 93, 103-112 (2007).
  22. Moreno Flores, S., Toca-Herrera, J. L. The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques. Nanoscale. 1, 40-49 (2009).
  23. Simons, K., Vaz, W. L. C. Model Systems, Lipid Rafts, and Cell Membranes1. Annu. Rev. Bioph. Biom. 33, 269-295 (2004).
  24. Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. The Journal of Lipid Research. 47, 1597-1598 (2006).
  25. Kahya, N. Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy. J. Biol. Chem. 278, 28109-28115 (2003).
  26. Akbarzadeh, A., et al. Liposome: classification, preparation and applications. Nanoscale Research Letters. 8, 102 (2013).
  27. Butt, H. -. J., Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology. 6, 1-7 (1995).
  28. Chon, J. W. M., Mulvaney, P., Sader, J. E. Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. Journal of Applied Physics. 87, 3973 (2000).
  29. Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics. 84, 64 (1998).
  30. Sader, J. E., Pacifico, J., Green, C. P., Mulvaney, P. General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. Journal of Applied Physics. 97, 12490310 (2005).
  31. Canale, C., Torre, B., Ricci, D., Braga, P. C. Recognizing and avoiding artifacts in atomic force microscopy imaging. Methods Mol Biol. 736, 31-43 (2011).
  32. Lee, M. -. T., Chen, F. -. Y., Huang, H. W. Energetics of Pore Formation Induced by Membrane Active Peptides. Biochemistry-US. 43, 3590-3599 (2004).
  33. Henriksen, J. R., Ipsen, J. H. Measurement of membrane elasticity by micro-pipette aspiration. The European physical journal. E, Soft matter. 14, 149-167 (2004).
  34. Nichols-Smith, S., Teh, S. -. Y., Kuhl, T. L. Thermodynamic and mechanical properties of model mitochondrial membranes. BBA-Biomembranes. 1663, 82-88 (2004).
  35. Tian, A., Johnson, C., Wang, W., Baumgart, T. Line Tension at Fluid Membrane Domain Boundaries Measured by Micropipette Aspiration. Phys. Rev. Lett. 98, (2007).
  36. Rigaud, J. -. L. Membrane proteins: functional and structural studies using reconstituted proteoliposomes and 2-D crystals. Brazilian Journal of Medical and Biological Research. 35, 753-766 (2002).
check_url/kr/52867?article_type=t

Play Video

Cite This Article
Unsay, J. D., Cosentino, K., García-Sáez, A. J. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers. J. Vis. Exp. (101), e52867, doi:10.3791/52867 (2015).

View Video