Summary

Etablering af en klinisk relevant<em> Ex vivo</em> Mock Cataract Surgery Model for Undersøgelse Epithelial Wound Reparation i en Native mikromiljø

Published: June 05, 2015
doi:

Summary

Described here is the establishment of a clinically relevant ex vivo mock cataract surgery model that can be used to investigate mechanisms of the injury response of epithelial tissues within their native microenvironment.

Abstract

The major impediment to understanding how an epithelial tissue executes wound repair is the limited availability of models in which it is possible to follow and manipulate the wound response ex vivo in an environment that closely mimics that of epithelial tissue injury in vivo. This issue was addressed by creating a clinically relevant epithelial ex vivo injury-repair model based on cataract surgery. In this culture model, the response of the lens epithelium to wounding can be followed live in the cells’ native microenvironment, and the molecular mediators of wound repair easily manipulated during the repair process. To prepare the cultures, lenses are removed from the eye and a small incision is made in the anterior of the lens from which the inner mass of lens fiber cells is removed. This procedure creates a circular wound on the posterior lens capsule, the thick basement membrane that surrounds the lens. This wound area where the fiber cells were attached is located just adjacent to a continuous monolayer of lens epithelial cells that remains linked to the lens capsule during the surgical procedure. The wounded epithelium, the cell type from which fiber cells are derived during development, responds to the injury of fiber cell removal by moving collectively across the wound area, led by a population of vimentin-rich repair cells whose mesenchymal progenitors are endogenous to the lens1. These properties are typical of a normal epithelial wound healing response. In this model, as in vivo, wound repair is dependent on signals supplied by the endogenous environment that is uniquely maintained in this ex vivo culture system, providing an ideal opportunity for discovery of the mechanisms that regulate repair of an epithelium following wounding.

Introduction

Den klinisk relevant, mock katarakt kirurgi, blev ex vivo epitel sårheling model her beskrevne udviklet til at tilvejebringe et værktøj til undersøgelse af de mekanismer, der regulerer reparation af epitelvæv som reaktion på en skade. Vigtige funktioner, der blev rettet til at skabe denne model medfølger 1) giver betingelser, der nøje replikerede in vivo respons på såret i en kultur indstilling, 2) lette modulere de regulatoriske elementer af reparation, og 3) evne til at afbilde reparationsprocessen, i sin helhed, i realtid. Udfordringen var derfor at skabe en kultur model, hvor det var muligt at studere og manipulere, epithelial sårheling i cellernes native mikromiljø. Tilgængeligheden af ​​dette sår-reparation model åbner nye muligheder for at identificere de endogene signalsystemer tidskoder fra matrix proteiner, cytokiner og kemokiner, der regulerer reparationsprocessen. Derudover modellen er ideel til at undersøge, hvordan enn epitel er i stand til at bevæge sig som en kollektiv ark til at re-epithelialize sårområdet 2,3, og til bestemmelse af afstamning af mesenkymale leder celler ved sårkanten der fungerer i dirigere den kollektive migration af de sårede epitel 4. Denne model giver også en platform med til at identificere lægemidler, der kunne fremme effektiv sårheling og forhindre afvigende sårreparation 5.

Der findes allerede en række af tilgængelige sår-reparation-modeller, både i kultur og in vivo, der har givet det meste af, hvad der er kendt om såret reparationsprocessen i dag. I animalske skade modeller, såsom hornhinden 6-12 og hud 13-17, er der mulighed for at studere svaret af vævet til at såre i forbindelse med alle de reparationer mæglere, der kunne være involveret i processen, herunder bidrag fra vaskulatur og nervesystemet. Der er imidlertid begrænsninger for at manipulere erfamentale tilstande in vivo, og det er endnu ikke muligt at foretage billeddannelse undersøgelser af reparationen respons in vivo, kontinuerligt. I modsætning hertil er de fleste in vitro sår-reparation kultur modeller, såsom bunden sår, kan nemt manipuleres og fulgt over tid, men mangler den miljømæssige kontekst studere sårheling i in vivo væv. Mens ex vivo modeller tilbyder fordelen af at studere den skade reparationsprocessen kontinuerligt over tid i forbindelse med cellernes mikromiljø kombineret med evnen til at modulere de molekylære regulatorer af reparation på ethvert tidspunkt i processen, er der få modeller, som passer disse parametre.

Her beskrives en fremgangsmåde til at generere meget reproducerbar ex vivo epitel sårheling kulturer, der gengiver et epitelvæv reaktion på et fysiologisk sårdannelse. Brug af chick embryo linse som en vævskilde, en ex vivo mock katarakt kirurgi udføres. Linsen er en ideel væv til brug for disse undersøgelser, da det er selvstændig inden for en tyk basalmembran kapsel, avaskulær ikke innerverede, og fri for alle tilknyttede stroma 18,19. I den menneskelige sygdom, katarakt kirurgi adresser synstab på grund opacifikation af linsen og involverer fjernelse af linsen fiber cellemasse, som omfatter størstedelen af ​​linsen. Efter kataraktoperation vision genoprettes gennem indsættelse af en kunstig intraokulær linse. Grå stær kirurgi procedure gennem fjernelse af fiberceller, inducerer en skade respons i den tilstødende linse epitel, som reagerer ved reepitelisering af den bageste område af linsekapslen, der var blevet besat af fiberceller. I kataraktoperation, som i de fleste sår reparation reaktioner, der sommetider opstår en afvigende fibrotisk udfald af sårheling respons, der er forbundet med fremkomsten af ​​myofibroblaster, som i linsen er kendt som Posterior Capsule opacifikation 20-22. For at generere kataraktoperation sårheling model er en katarakt kirurgi procedure efterlignes in linser fjernet fra chick embryo øjet til frembringelse af en fysiologisk skade. Mikrokirurgiske fjernelse af linsen fiber celler resulterer i en meget konsekvent cirkulært sår område omgivet af linse-epitelceller. Denne celle population forbliver solidt fastgjort til linsen basalmembran kapsel og såret af den kirurgiske procedure. Epitelcellerne migrerer på det blottede område af det endogene basalmembran at helbrede såret, ledet af en population af vimentin-rige mesenchymal-celler er kendt inden for reparationsprocessen som leder celler 1. Med denne model respons et epithel skade kan let visualiseres og fulgt med tiden i forbindelse med cellernes mikromiljø. Cellerne er let tilgængelige for modifikationer af ekspression eller aktivering af molekyler forventes at spille en rolle i sårheling. En kraftig funktion i ther model er evnen til at isolere og studere migration-specifikke ændringer i forbindelse med sårheling. Evnen til at fremstille store antal af alderen matchede ex vivo sårheling kulturer til undersøgelser er en anden fordel ved denne model. Således er denne model system giver en unik mulighed for at drille hinanden mekanismer sårheling og test terapi for deres effekt på sårheling proces. Ex vivo mock kataraktoperation model forventes at have bred anvendelighed, hvilket giver en kritisk ressource for at studere mekanismer skade reparation.

Protocol

Følgende protokol overholder Thomas Jefferson University Institutional Animal Care og brug Udvalg retningslinjer, og med ARVO Statement for brug af dyr i Vision Research. 1. Opsætning og Udarbejdelse af objektiver til Ex Vivo Wound Kultur Placere tre 100 mm petriskåle i en steril, laminar flow hætte. Fylde to af de petriskåle halvvejs med Tris / Dextrose puffer (TD buffer; 140 mM NaCI, 5 mM KCI, 0,7 mM Na 2 PO 4, 5 mM D-glucose, 8,25 mM Tris Bas…

Representative Results

Ex vivo-model skabt til at studere sårhelingsprocessen i cellernes native mikromiljø For at undersøge mekanismer, der er involveret i reguleringen af sårheling af et epitel inden cellernes indfødte mikromiljø, blev en klinisk relevant ex vivo mock operation for grå stær model oprettet. Denne model er skabt af linsen væv, som giver mange fordele på grund af dets iboende egenskaber: 1) objektivet er et selvstændigt organ omgivet af en tyk basalmembran kaldet linsen…

Discussion

Here is described a technique for preparing a culture model of wound repair that involves performing an ex vivo cataract surgery on chick embryo lenses after their removal from the eye. The lens epithelium responds to this clinically relevant wounding with a repair process that closely mimics that which occurs in vivo, and shares features with wound repair in other epithelial tissues2,4. While the protocol is straightforward and simple to follow, performing mock cataract surgery with embryoni…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by National Institutes of Health Grant to A.S.M. (EY021784).

Materials

Sodium Chloride (NaCl) Fisher Scientific S271-3 Use at 140mM in TD Buffer
Potassium Chloride (KCl) Fisher Scientific P217-500 Use at 5mM in TD Buffer
Sodium Phosphate (Na2HPO4) Sigma S0876 Use at .7mM in TD Buffer
D-glucose (Dextrose) Fisher Scientific D16-500 Use at 0.5mM in TD Buffer
Tris Base Fisher Scientific BP152-1 Use at 8.25mM in TD Buffer
Hydrochloric acid Fisher Scientific A144-500 Use to pH TD buffer to 7.4
Media 199 GIBCO 11150-059
L-glutamine Corning/CellGro 25-005-CI Use at 1% in Media199
Penicillin/streptomycin Corning/CellGro 30-002-CI Use at 1% in Media199
100mm petri dishes Fisher Scientific FB0875711Z
Stericup Filter Unit Millipore SCGPU01RE Use to filter sterilize Media
Dumont #5 forceps (need 2) Fine Science Tools 11251-20
35mm Cell Culture Dish Corning 430165
27 Gauge 1mL SlipTip with precision glide needle BD 309623
Fine Scissors Fine Science Tools 14058-11
Standard Forceps Fine Science Tools 91100-12
Other Items Needed: General dissection instruments,  fertile white leghorn chicken eggs, 
check egg incubator (humidified, 37.7°C), laminar flow hood, binocular stereovision dissecting 
microscope

References

  1. Walker, J. L., et al. Unique precursors for the mesenchymal cells involved in injury response and fibrosis. Proceedings of the National Academy of Sciences of the United States of America. 107, 13730-13735 (2010).
  2. Friedl, P., Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology. 10, 445-457 (2009).
  3. Riahi, R., Yang, Y., Zhang, D. D., Wong, P. K. Advances in wound-healing assays for probing collective cell migration. Journal of laboratory automation. 17, 59-65 (2012).
  4. Khalil, A. A., Friedl, P. Determinants of leader cells in collective cell migration. Integrative biology : quantitative biosciences from nano to macro. 2, 568-574 (2010).
  5. Walker, J. L., Wolff, I. M., Zhang, L., Menko, A. S. Activation of SRC kinases signals induction of posterior capsule opacification. Investigative ophthalmology & visual science. 48, 2214-2223 (2007).
  6. Sta Iglesia, D. D., Stepp, M. A. Disruption of the basement membrane after corneal debridement. Investigative ophthalmology & visual science. 41, 1045-1053 (2000).
  7. Pal-Ghosh, S., Pajoohesh-Ganji, A., Brown, M., Stepp, M. A. A mouse model for the study of recurrent corneal epithelial erosions: alpha9beta1 integrin implicated in progression of the disease. Investigative ophthalmology & visual science. 45, 1775-1788 (2004).
  8. Pal-Ghosh, S., Pajoohesh-Ganji, A., Tadvalkar, G., Stepp, M. A. Removal of the basement membrane enhances corneal wound healing. Experimental eye research. 93, 927-936 (2011).
  9. Stepp, M. A., et al. Wounding the cornea to learn how it heals. Experimental eye research. 121, 178-193 (2014).
  10. Kuwabara, T., Perkins, D. G., Cogan, D. G. Sliding of the epithelium in experimental corneal wounds. Investigative ophthalmology. 15, 4-14 (1976).
  11. Sherrard, E. S. The corneal endothelium in vivo: its response to mild trauma. Experimental eye research. 22, 347-357 (1976).
  12. Stramer, B. M., Zieske, J. D., Jung, J. C., Austin, J. S., Fini, M. E. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Investigative ophthalmology & visual science. 44, 4237-4246 (2003).
  13. Escamez, M. J., et al. An in vivo model of wound healing in genetically modified skin-humanized mice. The Journal of investigative dermatology. 123, 1182-1191 (2004).
  14. Werner, S., Breeden, M., Hubner, G., Greenhalgh, D. G., Longaker, M. T. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. The Journal of investigative dermatology. 103, 469-473 (1994).
  15. Tarin, D., Croft, C. B. Ultrastructural studies of wound healing in mouse skin. II. Dermo-epidermal interrelationships. Journal of anatomy. 106, 79-91 (1970).
  16. Croft, C. B., Tarin, D. Ultrastructural studies of wound healing in mouse skin I. Epithelial behaviour. Journal of anatomy. 106, 63-77 (1970).
  17. Winstanley, E. W. The epithelial reaction in the healing of excised cutaneous wounds in the dog. Journal of comparative pathology. 85, 61-75 (1975).
  18. Wormstone, I. M., Wride, M. A. The ocular lens: a classic model for development, physiology and disease. Philosophical transactions of the Royal Society of London. Series B, Biological. 366, 1190-1192 (2011).
  19. Danysh, B. P., Duncan, M. K. The lens capsule. Experimental eye research. 88, 151-164 (2009).
  20. Awasthi, N., Guo, S., Wagner, B. J. Posterior capsular opacification: a problem reduced but not yet eradicated. Archives of ophthalmology. 127, 555-562 (2009).
  21. Walker, T. D. Pharmacological attempts to reduce posterior capsule opacification after cataract surgery–a review. Clinical & experimental ophthalmology. 36, 883-890 (2008).
  22. Schmidbauer, J. M., et al. Posterior capsule opacification. International ophthalmology clinics. 41, 109-131 (2001).
  23. Menko, A. S., et al. A central role for vimentin in regulating repair function during healing of the lens epithelium. Molecular biology of the cell. 25, 776-790 (2014).
  24. Chauss, D., et al. Differentiation state-specific mitochondrial dynamic regulatory networks are revealed by global transcriptional analysis of the developing chicken lens. G3 (Bethesda). 4, 1515-1527 (2014).
  25. Leonard, M., Zhang, L., Bleaken, B. M., Menko, A. S. Distinct roles for N-Cadherin linked c-Src and fyn kinases in lens development. Developmental dynamics : an official publication of the American Association of Anatomists. 242, 469-484 (2013).
  26. Sieg, D. J., et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature cell biology. 2, 249-256 (2000).
  27. Sieg, D. J., Hauck, C. R., Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. Journal of cell science. 112 (Pt 16), 2677-2691 (1999).
  28. Hauck, C. R., Hsia, D. A., Schlaepfer, D. D. The focal adhesion kinase–a regulator of cell migration and invasion). IUBMB life. 53, 115-119 (2002).
  29. Zhao, X., Guan, J. L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced drug delivery reviews. 63, 610-615 (2011).
  30. Menko, A. S., Bleaken, B. M., Walker, J. L. Regional-specific alterations in cell-cell junctions, cytoskeletal networks and myosin-mediated mechanical cues coordinate collectivity of movement of epithelial cells in response to injury. Experimental cell research. 322, 133-148 (2014).
  31. Martin, P. Wound healing–aiming for perfect skin regeneration. Science. 276, 75-81 (1997).
  32. Ferguson, M. W., O’Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 839-850 (2004).
  33. Redd, M. J., Cooper, L., Wood, W., Stramer, B., Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philosophical transactions of the Royal Society of London. Series B, Biological. 359, 777-784 (2004).
  34. Nodder, S., Martin, P. Wound healing in embryos: a review. Anatomy and embryology. 195, 215-228 (1997).
  35. Gurtner, G. C., Werner, S., Barrandon, Y., Longaker, M. T. Wound repair and regeneration. Nature. 453, 314-321 (2008).
check_url/kr/52886?article_type=t

Play Video

Cite This Article
Walker, J. L., Bleaken, B. M., Wolff, I. M., Menko, A. S. Establishment of a Clinically Relevant Ex Vivo Mock Cataract Surgery Model for Investigating Epithelial Wound Repair in a Native Microenvironment. J. Vis. Exp. (100), e52886, doi:10.3791/52886 (2015).

View Video