Summary

实时多细胞动力学延长时间推移活体成像在肿瘤微环境

Published: June 12, 2016
doi:

Summary

这个协议描述了使用多光子显微术的实时在单细胞分辨率来执行多细胞相互作用的延长时间推移成像,体内

Abstract

In the tumor microenvironment, host stromal cells interact with tumor cells to promote tumor progression, angiogenesis, tumor cell dissemination and metastasis. Multicellular interactions in the tumor microenvironment can lead to transient events including directional tumor cell motility and vascular permeability. Quantification of tumor vascular permeability has frequently used end-point experiments to measure extravasation of vascular dyes. However, due to the transient nature of multicellular interactions and vascular permeability, the kinetics of these dynamic events cannot be discerned. By labeling cells and vasculature with injectable dyes or fluorescent proteins, high-resolution time-lapse intravital microscopy has allowed the direct, real-time visualization of transient events in the tumor microenvironment. Here we describe a method for using multiphoton microscopy to perform extended intravital imaging in live mice to directly visualize multicellular dynamics in the tumor microenvironment. This method details cellular labeling strategies, the surgical preparation of a mammary skin flap, the administration of injectable dyes or proteins by tail vein catheter and the acquisition of time-lapse images. The time-lapse sequences obtained from this method facilitate the visualization and quantitation of the kinetics of cellular events of motility and vascular permeability in the tumor microenvironment.

Introduction

从初级乳腺肿瘤的肿瘤细胞的传播已经显示出不仅涉及肿瘤细胞,但承载间质细胞包括巨噬细胞和内皮细胞。此外,肿瘤血管异常与通透性增加1。因此,确定如何肿瘤细胞,巨噬细胞和内皮细胞相互作用介导的原发肿瘤微环境的血管通透性和肿瘤细胞血管内为理解转移重要。理解血管通透性,肿瘤细胞血管内和在肿瘤微环境的多细胞相互作用的基本信令机制的动力学可提供在抗癌疗法的开发和管理的关键信息。

研究体内肿瘤血管通透性的主要手段一直是血管外染料的测量,如伊文思蓝2,高分子量的葡聚糖(155 kDa)的染料注射后3和荧光团或放射性缀合的蛋白质(包括白蛋白)4在固定的时间点。在显微镜的进步,动物模型和荧光染料已通过活体显微镜5启用细胞过程和在活体动物血管通透性的可视化。

活的动物成像采集静态图像,或短的时间推移的序列在数个时间点不允许在肿瘤微环境6,7-动态事件的完整的理解。实际上,静态图像采集在24小时的过程中显示,肿瘤血管是漏水,但血管通透性的动力学没有观察到6。因此,延长的持续时间推移成像长达12小时捕获在肿瘤微环境动态事件的动力学。

本协议描述使用较长时间推移multiphot的关于活体显微镜来研究在肿瘤微环境动态多细胞事件。在肿瘤微环境多种细胞类型标记有可注射的染料或通过使用表达荧光蛋白的转基因动物。使用尾静脉导管的血管的染料或蛋白质可成像开始之后被注入以获得在肿瘤微环境的多细胞事件的动力学数据。活细胞成像的乳腺肿瘤是通过手术准备一个皮瓣露出。图像被获取用于使用配备有多个光电倍增管(PMT)探测器8多光子显微镜长达12小时。通过使用适当的过滤器,减法算法使4 PMT检测器获取在肿瘤微环境同时9 5的荧光信号。高分辨率多光子活体显微镜捕获在肿瘤微环境肿瘤 – 基质相互作用的单细胞分辨率成像,从而导致更好ü血管通透性和肿瘤细胞血管内10-13的nderstanding。具体地,扩展的活体成像显露高度局部,瞬态血管通透性,在肿瘤细胞,巨噬细胞和内皮细胞之间的相互作用的位点选择性地发生的事件(定义为转移,TMEM 14的肿瘤微环境)13。此外,肿瘤细胞血管内仅在TMEM发生和与血管通透性13被空间和时间上相关。这些事件的动态单细胞分辨率是通过在肿瘤微环境中使用荧光标记的细胞的延长的时间推移多光子显微镜的成为可能。

Protocol

中描述的所有程序必须按照与使用脊椎动物,包括医药机构动物护理和使用委员会的爱因斯坦医学院的事先批准的准则和规定进行。 1.生成荧光标记的肿瘤及肿瘤相关巨噬细胞通过杂交自发,原地,遗传工程小鼠乳腺癌模型中,小鼠乳腺肿瘤病毒长末端重复与荧光报告[ 即转基因小鼠驱动多瘤中间T抗原(MMTV-PyMT),增强型绿色荧光产生的荧光标记的肿瘤细胞蛋白(EGFP)…

Representative Results

延长的时间推移活体显微镜使在肿瘤微环境的多细胞过程的单细胞分辨率的成像。通过荧光标记的肿瘤细胞,巨噬细胞,血管空间和可视化使用二次谐波生成信号的胶原纤维网络,在肿瘤微环境多个隔间成像期间被同时跟踪。标记的荧光蛋白的肿瘤细胞可以在转基因小鼠如已在MMTV-PyMT-Dendra2小鼠已经完成,用标记与Dendra2( 图1A)的乳腺肿瘤细胞中产生。通过?…

Discussion

在肿瘤微环境自发发生的细胞相互作用可以导致肿瘤细胞运动和血管内的变化。活肿瘤组织的高分辨率活体成像允许多细胞动力学,可以是高瞬态10,13,24的可视化。终点分立时间点获取的可提供的在肿瘤微环境的过程的分子机制的基本信息体内测定或时间推移的图像。活体成像的研究已经被用于研究在肿瘤微环境中发生的数天的过程,生成对血管生成,肿瘤细胞迁移和响应…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由美国国防部的乳腺癌研究计划下授予号(ASH,W81XWH-13-1-0010),NIH CA100324,PPG CA100324,和综合成像计划的支持。

Materials

155 kDa dextran-tetramethylrhodamine isothiocyanate Sigma Aldrich T1287 reconstitute at 20 mg/mL in 1 X PBS
70 kDa dextran-Texas Red Life Technologies D-1830 reconstitute at 10 mg/mL in 1 X PBS
10 kDa dextran-fluorescein isothyocyanate Sigma Aldrich FD10S reconstitute at 20 mg/mL in 1 X PBS
Qdot 705 ITK Amino (PEG) Quantum Dots Life Technologies Q21561MP Dilute 25 uL in 175 uL of 1 X PBS for injection
MMTV-PyMT mice Jackson Laboratory 2374
Csf1r-ECFP mice (Csf1r-Gal4/VP16,UAS-ECFP) Jackson Laboratory 26051
Csf1r-EGFP mice Jackson Laboratory 18549
1 x PBS Life Technologies
Isoethesia (isoflurane) Henry Schein Animal Health 50033 250 mL
Oxygen AirTech
1 mL syringe, tuberculin slip tip BD 309659
30G x 1 (0.3 mm X 25 mm) needle BD 305128
Polyethylene micro medical tubing  Scientific Commodities Inc BB31695-PE/1 0.28 mm I.D. X 0.64 mm O.D.
Microscope coverglass Corning 2980-225 thickness 1.5, 22 X 50 mm
MouseOx oximeter, software and sensors STARR Life Sciences
Laboratory tape Fisher Scientific 159015R
soft rubber pad McMaster-Carr 8514K62 Ultra-Soft Polyurethane Film, 3/16” Thick, 12" x 12", 40 Oo Durometer, Plain Back
hard rubber pad McMaster-Carr 8568K615 High-Strength Neoprene Rubber Sheet 1/4" Thick, 12" X 12", 50A Durometer,
Microscope Olympus The microscope is a custom built two laser multiphoton microscope based on an Olympus IX-71 stand utilizing a 20x 1.05NA objective lens. 
7-Punch set McMaster-Carr 3429A12 , 1/4" to 1" Hole Diameter, for Hammer-Driven Hole Punch, 

References

  1. Gerlowski, L. E., Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 31 (3), 288-305 (1986).
  2. Wang, H. -. L., Lai, T. W. Optimization of Evans blue quantitation in limited rat tissue samples. Sci Rep. 4, (2014).
  3. Dvorak, H. F. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 162 (6), 1747-1757 (2003).
  4. Nagy, J. A., et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab Invest. 86 (8), 767-780 (2006).
  5. Egawa, G., et al. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep. 3, (2013).
  6. Yuan, F., et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55 (17), 3752-3756 (1995).
  7. Dellian, M., Yuan, F., Trubetskoy, V. S., Torchilin, V. P., Jain, R. K. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br J Cancer. 82 (9), 1513-1518 (2000).
  8. Entenberg, D., et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat Protocols. 6 (10), 1500-1520 (2011).
  9. Entenberg, D., et al. Imaging tumor cell movement in vivo. Curr Protoc Cell Biol. Chapter. 19, (2013).
  10. Patsialou, A., et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo. cell migration in human breast tumors. Intravital. 2 (2), e25294 (2013).
  11. Gligorijevic, B., Bergman, A., Condeelis, J. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLoS Biol. 12 (11), e1001995 (2014).
  12. Roussos, E. T., et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci. 13, 2120-2131 (2011).
  13. Harney, A. S., et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA). Cancer Discov. 5 (9), 932-943 (2015).
  14. Robinson, B. D., et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res. 15, 2433-2441 (2009).
  15. Sasmono, R. T., et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 101 (3), 1155-1163 (2003).
  16. Ovchinnikov, D. A., et al. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J Leukcocyte Biol. 83 (2), 430-433 (2008).
  17. Liu, H., et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A. 107 (42), 18115-18120 (2010).
  18. Nakasone, E. S., Askautrud, H. A., Egeblad, M. Live imaging of drug responses in the tumor microenvironment in mouse models of breast cancer. J Vis Exp. (73), (2013).
  19. Weis, S., Cui, J., Barnes, L., Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 167 (2), 223-229 (2004).
  20. Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J., Condeelis, J. High-Resolution Multiphoton Imaging of Tumors. In Vivo. Cold Spring Harb Protoc. (10), (2011).
  21. Lathia, J. D., et al. Direct in vivo. evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One. 6 (9), e24807 (2011).
  22. Nakasone, E. S., et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 21 (4), 488-503 (2012).
  23. Dreher, M. R., et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 98 (5), 335-344 (2006).
  24. Wyckoff, J. B., et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67 (6), 2649-2656 (2007).
  25. Chittajallu, D. R., et al. In vivo. cell-cycle profiling in xenograft tumors by quantitative intravital microscopy. Nat Methods. 12 (6), 577-585 (2015).
  26. Kedrin, D., et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods. 5 (12), 1019-1021 (2008).
  27. Yano, S., et al. Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness. Cell Cycle. 13 (13), 2110-2119 (2014).
  28. Yang, M., Jiang, P., Hoffman, R. M. Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time. Cancer Res. 67 (11), 5195-5200 (2007).
  29. Manning, C. S., et al. Intravital imaging reveals conversion between distinct tumor vascular morphologies and localized vascular response to Sunitinib. Intravital. 2 (1), 24790 (2013).
  30. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K., Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol. 130 (6), 1147-1154 (2008).
  31. Brown, E. B., et al. In vivo. measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 7 (7), 864-868 (2001).

Play Video

Cite This Article
Harney, A. S., Wang, Y., Condeelis, J. S., Entenberg, D. Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment. J. Vis. Exp. (112), e54042, doi:10.3791/54042 (2016).

View Video