Summary

計測<em>インビトロ</em酵素特性評価のための> ATPase活性

Published: August 23, 2016
doi:

Summary

We describe a basic protocol for quantitating in vitro ATPase activity. This protocol can be optimized based on the level of activity and requirements for a given purified ATPase.

Abstract

アデノシン三リン酸加水分解酵素、またはATPアーゼは、細胞機能の多様な配列に重要な役割を果たしています。これらの動的なタンパク質は、タンパク質輸送および分解、溶質輸送、および細胞の動きとして、機械的な作業のためのエネルギーを生成することができます。ここで説明するプロトコルは、機能的な特徴付けのために精製されたATPアーゼのインビトロ活性を測定するための基本的なアッセイです。タンパク質は、無機リン酸の放出をもたらす反応でATPを加水分解し、遊離したリン酸塩の量を、比色アッセイを用いて定量されま​​す。この高度に適応プロトコルは、運動またはエンドポイントアッセイにおいてATPアーゼ活性を測定するために調整することができます。代表的なプロトコルは活動とEPSEの要件に基づいて、ここで提供され、AAA + ATPアーゼは、細菌コレラ菌にタイプIIの分泌に関与します。活性を測定するために必要な精製されたタンパク質の量は、アッセイの長さおよびSAのタイミングおよび数mpling間隔は、緩衝液および塩組成、温度、補因子、刺激剤(もしあれば)、 等は、ここで説明したものと異なる場合があり、したがって、いくつかの最適化が必要であってもよいです。このプロトコルは、特徴付けるATPアーゼのための基本的な枠組みを提供し、迅速に行われ、容易に、必要に応じて調整することができます。

Introduction

ATPases are integral enzymes in many processes across all kingdoms of life. ATPases act as molecular motors that use the energy of ATP hydrolysis to power such diverse reactions as protein trafficking, unfolding, and assembly; replication and transcription; cellular metabolism; muscle movement; cell motility; and ion pumping1-3. Some ATPases are transmembrane proteins involved in transporting solutes across membranes, others are cytoplasmic and may be associated with a biological membrane such as the plasma membrane or those of organelles.

AAA+ ATPases (ATPases associated with various cellular activities) make up a large group of ATPases that share some sequence and structural conservation. These proteins contain conserved nucleotide binding motifs such as Walker-A and -B boxes and form oligomers (generally hexamers) in their active state1. Large conformational changes in these proteins upon nucleotide binding have been characterized among diverse members of the AAA+ family. EpsE is a AAA+ ATPase and member of the bacterial Type II/IV secretion subfamily of NTPases4-6. EpsE powers Type II Secretion (T2S) in Vibrio cholerae, the causative agent of cholera. The T2S system is responsible for the secretion of a wide variety of proteins, such as the virulence factor cholera toxin that causes profuse watery diarrhea when V. cholerae colonizes the human small intestine7.

Techniques for quantitating in vitro ATPase activity are varied, but commonly measure phosphate release using colorimetric, fluorescent, or radioactive substrates8-11. We describe a basic method for determining in vitro ATPase activity of purified proteins using a colorimetric assay based on a commercially available malachite green-containing substrate that measures liberated inorganic phosphate (Pi). At low pH, malachite green molybdate forms a complex with Pi and the level of complex formation can be measured at 650 nm. This simple and sensitive assay may be used to functionally characterize new ATPases and to evaluate the roles of potential activators or inhibitors, to determine the importance of domains and/or specific residues, or to assess the effect of particular treatments on enzymatic activity.

Protocol

1.精製タンパク質とATP加水分解反応を行います精製タンパク質とのインキュベーションのために必要なすべての試薬の株式を準備します。 100mMのHEPES pHは8.5、65 mMのNaClおよび5%グリセロール(またはその他の適切なアッセイバッファー)を含む5倍HEPES /食塩/グリセロール(HNG)バッファを準備します。 (ATPアーゼは、金属依存している場合、または他の金属)を水に100?…

Representative Results

T2S ATPアーゼEPSEのin vitro活性は、細胞質EPSLのドメイン(EPSE-cytoEpsL)と酸性リン脂質カルジオリピン12を加えてEPSEの同時精製によって刺激することができます。このアッセイを用いてタンパク質の変異形態を、野生型(WT)の活性を比較することにより、ATP加水分解の特定EPSE残基の役割を決定することも可能です。ここで、EPSE亜鉛結合ドメイン内の2つ?…

Discussion

これは、生化学的な特徴付けのために精製されたタンパク質のin vitroでのATPase活性測定するための一般的なプロトコルです。この方法は、容易に最適化されています。例えば、蛋白質、緩衝液および塩組成物の量、温度を調整し、アッセイ長さ(間隔の合計数を増やすなど)の間隔を変化させると、活性定量を改善することができます。市販のマラカイトグリーンベースの試?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge funding from a National Institutes of Health grant RO1AI049294 (to M. S.).

Materials

HEPES buffer Fisher BP310-500
Sodium chloride Fisher BP358-212
Magnesium chloride Fisher BP214-500
Adenosine triphosphate (ATP) Fisher BP41325
96-well plates (clear, flat-bottom) VWR 82050-760
BIOMOL Green Enzo Life Sciences BML-AK111 Preferred phosphate detection reagent. Caution: irritant.
Microplate reader BioTek Synergy or comparable
Prism 5 GraphPad Software

References

  1. Hanson, P. I., Whiteheart, S. W. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6 (7), 519-529 (2005).
  2. Baker, T. A., Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochimica et Biophysica Acta. 1823 (1), 15-28 (2012).
  3. Maxson, M. E., Grinstein, S. The vacuolar-type H+-ATPase at a glance – more than a proton pump. J Cell Sci. 127 (23), 4987-4993 (2014).
  4. Planet, P. J., Kachlany, S. C., DeSalle, R., Figurski, D. H. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A. 98 (5), 2503-2508 (2001).
  5. Robien, M. A., Krumm, B. E., Sandkvist, M., Hol, W. G. J. Crystal Structure of the Extracellular Protein Secretion NTPase EpsE of Vibrio cholerae. J Mol Biol. 333 (3), 657-674 (2003).
  6. Camberg, J. L., Sandkvist, M. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol. 187 (1), 249-256 (2005).
  7. Sandkvist, M. Type II secretion and pathogenesis. Infect Immun. 69 (6), 3523-3535 (2001).
  8. Brune, M., Hunter, J. L., Corrie, J. E. T., Webb, M. R. Direct, Real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. 생화학. 33 (27), 8262-8271 (1994).
  9. Carter, S. G., Karl, D. W. Inorganic phosphate assay with malachite green: An improvement and evaluation. J Biochem Biophys Methods. 7 (1), 7-13 (1982).
  10. Henkel, R. D., VandeBerg, J. L., Walsh, R. A. A microassay for ATPase. Anal Biochem. 169 (2), 312-318 (1988).
  11. Harder, K. W., Owen, P., Wong, L. K. H., Aebersold, R., Clark-Lewis, I., Jirik, F. R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase β (HPTP β) using synthetic phosphopeptides. Biochem J. 298 (2), 395-401 (1994).
  12. Camberg, J. L., Johnson, T. L., Patrick, M., Abendroth, J., Hol, W. G., Sandkvist, M. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J. 26 (1), 19-27 (2006).
  13. McLaughlin, S. H., Smith, H. W., Jackson, S. E. Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol. 315 (4), 787-798 (2002).
  14. Shiue, S., Kao, K., Leu, W., Chen, L., Chan, N., Hu, N. XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J. 25 (7), 1426-1435 (2006).
  15. Ghosh, A., Hartung, S., van der Does, C., Tainer, J. A., Albers, S. V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem J. 437 (1), 43-52 (2011).
  16. Savvides, S. N., et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22 (9), 1969-1980 (2003).
  17. Sanghera, J., Li, R., Yan, J. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity. Assay Drug Dev Techn. 7 (6), 615-622 (2009).
  18. Sherman, D. J., et al. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Proc Natl Acad Sci U S A. 111 (13), 4982-4987 (2014).
  19. Zhang, X., et al. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A. 112 (14), E1705-E1714 (2015).
  20. Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P., Aherne, W. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem. 327 (2), 176-183 (2004).
check_url/kr/54305?article_type=t

Play Video

Cite This Article
Rule, C. S., Patrick, M., Sandkvist, M. Measuring In Vitro ATPase Activity for Enzymatic Characterization. J. Vis. Exp. (114), e54305, doi:10.3791/54305 (2016).

View Video