Summary

测量<em>体外</em>的酶学性质ATP酶活性

Published: August 23, 2016
doi:

Summary

We describe a basic protocol for quantitating in vitro ATPase activity. This protocol can be optimized based on the level of activity and requirements for a given purified ATPase.

Abstract

三磷酸腺苷水解酶,或ATP酶,在细胞功能多样化阵列发挥关键作用。这些动态蛋白可用于机械工作,如蛋白质运输和退化,溶质运移和细胞运动产生能量。此处所描述的协议是用于测量纯化ATP酶的体外活性功能表征一个基本化验。蛋白水解的ATP以导致的无机磷酸盐的释放反应,和磷酸盐的释放的量,然后用比色测定法进行定量。这个高度适应协议可以进行调整,以测量在动力学或终点测定ATP酶活性。代表性的协议是基于活性和EPSE要求这里提供时,AAA + ATP酶参与II型分泌在细菌霍乱弧菌 。测量活动所需的纯化的蛋白质的量,测定的长度和sa定时和数量mpling间隔,缓冲液和盐的组合物,温度,辅因子,兴奋剂(如果有的话) 可以从这里描述的变化,并且因此一些优化可能是必要的。该协议为特征的ATP酶的基本框架,并可以快速进行,方便地根据需要进行调整。

Introduction

ATPases are integral enzymes in many processes across all kingdoms of life. ATPases act as molecular motors that use the energy of ATP hydrolysis to power such diverse reactions as protein trafficking, unfolding, and assembly; replication and transcription; cellular metabolism; muscle movement; cell motility; and ion pumping1-3. Some ATPases are transmembrane proteins involved in transporting solutes across membranes, others are cytoplasmic and may be associated with a biological membrane such as the plasma membrane or those of organelles.

AAA+ ATPases (ATPases associated with various cellular activities) make up a large group of ATPases that share some sequence and structural conservation. These proteins contain conserved nucleotide binding motifs such as Walker-A and -B boxes and form oligomers (generally hexamers) in their active state1. Large conformational changes in these proteins upon nucleotide binding have been characterized among diverse members of the AAA+ family. EpsE is a AAA+ ATPase and member of the bacterial Type II/IV secretion subfamily of NTPases4-6. EpsE powers Type II Secretion (T2S) in Vibrio cholerae, the causative agent of cholera. The T2S system is responsible for the secretion of a wide variety of proteins, such as the virulence factor cholera toxin that causes profuse watery diarrhea when V. cholerae colonizes the human small intestine7.

Techniques for quantitating in vitro ATPase activity are varied, but commonly measure phosphate release using colorimetric, fluorescent, or radioactive substrates8-11. We describe a basic method for determining in vitro ATPase activity of purified proteins using a colorimetric assay based on a commercially available malachite green-containing substrate that measures liberated inorganic phosphate (Pi). At low pH, malachite green molybdate forms a complex with Pi and the level of complex formation can be measured at 650 nm. This simple and sensitive assay may be used to functionally characterize new ATPases and to evaluate the roles of potential activators or inhibitors, to determine the importance of domains and/or specific residues, or to assess the effect of particular treatments on enzymatic activity.

Protocol

1.执行与纯蛋白水解ATP反应备齐试剂的股票与纯蛋白孵化。 制备含有100mM HEPES pH 8.5的65毫摩尔NaCl和5%甘油(或其它测定缓冲液适当)5倍的HEPES /氯化钠/甘油(HNG)缓冲器。 制备的100mM的MgCl 2(或其他金属,如果ATP酶是金属依赖性)的水。 准备新鲜的100毫米ATP在200毫米的Tris基地使用高纯度的ATP(不进一步调整pH值)。等分试样并储存的ATP库存在-20℃下不超过几?…

Representative Results

所述T2S ATP酶EPSE 的体外活性可通过EPSE的共纯化与EPSL(EPSE-cytoEpsL)的胞质结构域和另外的酸性磷脂心磷脂12的刺激。另外,也可以通过比较野生型(WT)的活性,使用该测定的蛋白质的变异形式,以确定在ATP水解特定EPSE残基的作用。这里,替换在EPSE锌结合域中的两个赖氨酸残基的作用是通过纯化的WT EPSE-cytoEpsL的ATP酶活性的比较对EPSE K417AK419A-cytoEpsL变体测定?…

Discussion

用于对生化表征纯化的蛋白质的体外 ATP酶活性测定通用协议。该方法很容易进行优化;例如,调整的蛋白质,缓冲液和盐的组合物,温度,以及改变该测定长度和间隔(包括增加的间隔的总数)的量可提高活性定量。市售孔雀石基于绿色试剂都高度敏感,而且可以检测少量游离磷酸的(〜100微升50皮摩尔)。因为该测定的敏感性,这是至关重要的使用一次性塑料器皿,超纯水,缓…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge funding from a National Institutes of Health grant RO1AI049294 (to M. S.).

Materials

HEPES buffer Fisher BP310-500
Sodium chloride Fisher BP358-212
Magnesium chloride Fisher BP214-500
Adenosine triphosphate (ATP) Fisher BP41325
96-well plates (clear, flat-bottom) VWR 82050-760
BIOMOL Green Enzo Life Sciences BML-AK111 Preferred phosphate detection reagent. Caution: irritant.
Microplate reader BioTek Synergy or comparable
Prism 5 GraphPad Software

References

  1. Hanson, P. I., Whiteheart, S. W. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6 (7), 519-529 (2005).
  2. Baker, T. A., Sauer, R. T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochimica et Biophysica Acta. 1823 (1), 15-28 (2012).
  3. Maxson, M. E., Grinstein, S. The vacuolar-type H+-ATPase at a glance – more than a proton pump. J Cell Sci. 127 (23), 4987-4993 (2014).
  4. Planet, P. J., Kachlany, S. C., DeSalle, R., Figurski, D. H. Phylogeny of genes for secretion NTPases: Identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A. 98 (5), 2503-2508 (2001).
  5. Robien, M. A., Krumm, B. E., Sandkvist, M., Hol, W. G. J. Crystal Structure of the Extracellular Protein Secretion NTPase EpsE of Vibrio cholerae. J Mol Biol. 333 (3), 657-674 (2003).
  6. Camberg, J. L., Sandkvist, M. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol. 187 (1), 249-256 (2005).
  7. Sandkvist, M. Type II secretion and pathogenesis. Infect Immun. 69 (6), 3523-3535 (2001).
  8. Brune, M., Hunter, J. L., Corrie, J. E. T., Webb, M. R. Direct, Real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. 생화학. 33 (27), 8262-8271 (1994).
  9. Carter, S. G., Karl, D. W. Inorganic phosphate assay with malachite green: An improvement and evaluation. J Biochem Biophys Methods. 7 (1), 7-13 (1982).
  10. Henkel, R. D., VandeBerg, J. L., Walsh, R. A. A microassay for ATPase. Anal Biochem. 169 (2), 312-318 (1988).
  11. Harder, K. W., Owen, P., Wong, L. K. H., Aebersold, R., Clark-Lewis, I., Jirik, F. R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase β (HPTP β) using synthetic phosphopeptides. Biochem J. 298 (2), 395-401 (1994).
  12. Camberg, J. L., Johnson, T. L., Patrick, M., Abendroth, J., Hol, W. G., Sandkvist, M. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J. 26 (1), 19-27 (2006).
  13. McLaughlin, S. H., Smith, H. W., Jackson, S. E. Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J Mol Biol. 315 (4), 787-798 (2002).
  14. Shiue, S., Kao, K., Leu, W., Chen, L., Chan, N., Hu, N. XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J. 25 (7), 1426-1435 (2006).
  15. Ghosh, A., Hartung, S., van der Does, C., Tainer, J. A., Albers, S. V. Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding. Biochem J. 437 (1), 43-52 (2011).
  16. Savvides, S. N., et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22 (9), 1969-1980 (2003).
  17. Sanghera, J., Li, R., Yan, J. Comparison of the luminescent ADP-Glo assay to a standard radiometric assay for measurement of protein kinase activity. Assay Drug Dev Techn. 7 (6), 615-622 (2009).
  18. Sherman, D. J., et al. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport. Proc Natl Acad Sci U S A. 111 (13), 4982-4987 (2014).
  19. Zhang, X., et al. Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A. 112 (14), E1705-E1714 (2015).
  20. Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P., Aherne, W. High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem. 327 (2), 176-183 (2004).
check_url/kr/54305?article_type=t

Play Video

Cite This Article
Rule, C. S., Patrick, M., Sandkvist, M. Measuring In Vitro ATPase Activity for Enzymatic Characterization. J. Vis. Exp. (114), e54305, doi:10.3791/54305 (2016).

View Video