Summary

Разработка Вставка совместного культивирования системы двух клеточных типов в отсутствие межклеточных контактов

Published: July 17, 2016
doi:

Summary

In multicellular organisms, secreted soluble factors elicit responses from different cell types as a result of paracrine signaling. Insert co-culture systems offer a simple way to assess the changes mediated by secreted soluble factors in the absence of cell-cell contact.

Abstract

The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.

Introduction

Изучение тканей, органов или систем в пробирке является попыткой упростить очень сложные отношения , существующие между несколькими сотовыми подтипов , которые включают многоклеточные организмы. Действительно, в пробирке исследования позволяют получить детальное представление о популяции отдельных клеток. Есть два основных преимущества проведения в лабораторных экспериментах: 1) уменьшение клеточных взаимодействий, и 2) способность легко манипулировать клеточной среде. Таким образом, эти два преимущества позволили ученым предсказать поведение конкретных типов клеток в живом организме , что приводит к способности регулировать результаты внешних влияний в целых организмах. В этом смысле, в пробирке культуры клеток часто работает в качестве моста , соединяющего фундаментальных и прикладных наук о жизни. Тем не менее, есть и несколько недостатков работы в лабораторных условиях , наиболее важным из них в том , что определенная оговорка может пребывать в физиологическомаль значимость наблюдаемых фенотипов. В самом деле, когда один тип клеток выращивают в сосуде, культура теряет, в разной степени, его межклеточные соединения с другими типами клеток, его вклад в гуморальной среде из ткани и организма происхождения, а также якорей в пределах ткани, что позволило ему поддерживать определенную трехмерную структуру, иногда решающее значение для функции клеток.

Вопрос о межклеточных отношений была решена развитием смешанных методов культуры. В этом способе две или более клеточных популяций выращивают вместе в той же культурального сосуда. Тем не менее, эти смешанные культуры несут важные неудобства. С одной стороны, некоторые клеточные подтипы физически не взаимодействуют друг с другом в ткани происхождения и полагаться только на паракриновых связи понесенных секретируемых растворимых факторов и соседних рецепторов. Это случай для нескольких воспалительных процессов, которые зависят от проксимального сигнализации цитокина. В смешанном Cultures, физические взаимодействия неизбежны и сделать невозможным изучение паракринной связи в отсутствие межклеточных контактов, которые могут дать измененные результаты. С другой стороны, достижение клеточно-специфической интерпретации внутри смешанной популяции становится невозможным без использования жестких методов разделения, которые могут существенно повлиять на результаты.

Для решения этих важных вопросов, использование кондиционированной среды была разработана в качестве метода, позволяющего для разобщенным культур и изучения паракринной сигнализации. Этот метод требует передачи супернатанта одного типа клеток, так назвали кондиционированной среды, в лунки, содержащие другую популяцию клеток. Тем не менее, существенным недостатком является то, что короткоживущие молекулы не достаточно долго, в кондиционированной среде, чтобы быть переданы в лунки второго популяции клеток. Даже долгоживущие молекулы будут сильно разбавленный с течением времени за счет диффузии. Кроме того, обе ячейкинаселения участвуют только в одном направлении паракринному коммуникации, а не в активной двунаправленной связи. Это приводит к отсутствию сигналов обратной связи , которая имеет жизненно важное значение в воссоздании точных многоклеточные отношения , как они существуют в естественных условиях.

Как следствие , и движимый необходимостью лучше имитировать оригинал в условиях естественных условиях в клеточной среде в пробирке, несколько методов достижения в области клеточных культур были достигнуты на протяжении многих лет. Одним из наиболее значительных достижений было использование проницаемых штативов с микропористых мембран для compartmentalizing клеточных культур, используемых в первый раз по Grobstein в 1953 году 1. Такие проницаемые опоры были адаптированы на протяжении многих лет для размещения многочисленных типов клеток , и которые будут использоваться в нескольких различных приложений. В настоящее время, эти опоры существуют в виде полых вставок, которые предназначены для отдыха в скважинах из тканевой культуры пластины многоямного или в CircuLAR блюда. В системе со-культуры, вставка содержит один тип клеток , тогда как колодец или блюдо содержит другой клеточной популяции, что позволяет изучать вклад двух различных популяций клеток на их гуморального среды (рисунок 1). В результате, клеточная полярность (базолатеральная против апикальной секреции или приема сигнала) сохраняется, таким образом, присвоение Systems вставки сокультуре важное преимущество перед смешанных культур и кондиционированную среду методов. Несколько типов мембранных материалов доступны, наиболее распространенными из которых являются полиэстер (PET), поликарбонат (PC) или коллаген покрытием из политетрафторэтилена (PTFE), и они существуют в различных размеров пор в диапазоне от 0,4 мкм до 12,0 мкм. Эти разновидности материалов и размеров пор предлагают спектр вставок воздействует переменным функции, имеющие отношение к оптическим свойствам, толщины мембраны и присоединение клеток, которые делают их практичными на различных уровнях для следующих видов применения, не ограничиваясь ими:
-studyingклеточной дифференцировки, эмбриональное развитие, метастазирование опухолей и заживлении ран путем хемотоксических анализов через проницаемые мембраны;
-evaluating проникновения наркотиков путем оценки их переноса через эпителиальные или эндотелиальные монослои культивировали на проницаемые опорах, и;
-performing клеточные сокультурах для анализа модуляций поведение клеток, индуцированные секретируемых растворимых факторов, в отсутствии межклеточного контакта.

Цель данной статьи состоит в том, чтобы описать общие методические указания для выполнения третьей функции указанной выше, то есть оценить клеточные изменения, опосредованные секретируемых растворимых факторов при отсутствии межклеточного контакта, используя систему вставки совместного культивирования. Несколько различных направления исследований, систем использования вставки совместно культуры для того, чтобы ответить на вопросы, относящиеся к действию секретируемых растворимых факторов на популяции клеток. Действительно, паракринная сигнализации, который модулирует клеточный поведение на различных уровнях уместен во всех тканяхи систем, что делает вставки системы совместного культивирования незаменим для обеспечения прогресса в этих областях. С другой стороны, использование вставок может подтвердить, что преобразование сигналов является прямым контактом межклеточной и не секретируемых факторов. Одним из наиболее важных областей применения вставок в исследованиях воспаления 2-14 , где эффект секретируемых цитокинов оценивается в различных клеточных игроков иммунитета. В частности, исследование воспаления в центральной нервной системе (ЦНС) значительно выгоду от исследований вставки совместно культуры, которые позволили более четкому определению различных паракринной роли нейронов и микроглии в вождении нейровоспаления 15-21. Эти системы были разработаны также изучить противовоспалительный потенциал молекул , который зависит от их способности снижать или ингибировать секрецию провоспалительных факторов 22-26. Исследования , относящиеся к раку 27-31, в частности , механизмы , лежащие в основе ангиогенез 32-34 и inflammatiна 35-42 в онкогенеза, также извлекает выгоду из систем вставки совместного культивирования. Кроме того, растворимые факторы имеют первостепенное значение в процессах , которые управляют дифференцировка и несколько исследований использовали вставки , чтобы ответить на вопросы в этой конкретной области 43-50. В ЦНС, видя , как нервная ткань имеет очень ограниченный потенциал обновления, изучение neurotrophism и нейропротекции является фундаментальным и широко обеспечивается за счет использования стволовых клеток в системах совместного культивирования 51-56. Кроме того, вставки также используются в качестве различных областях , как нефрологии 57,58, эндотелиальных взаимодействий и ангиогенеза 59-62, 63-65 апоптоз сигнализации, воспаление ожирения и метаболического синдрома 22,23,66-67, внутреннего уха защиты волосковых клеток 68,69, и даже в вирулентности гриба 70,71 и 72,73 паразитологии.

В данной статье общие методические указания для того, чтобы создать experimлор ввиду оценки клеточных изменений, опосредованных секретируемых растворимых факторов, с использованием системы вставки сокультивирования. В частности, мы сосредоточим наше внимание на нервных клеток со-культур и их использования в учебном процессе нейрогенный. С учетом весьма обширный спектр экспериментов, которые вставляет позволяют пилоту, это невыносимо, чтобы охватить все аспекты этого метода клеточной культуры. В качестве примера, конкретный протокол для измерения эффектов цитокинов, секретируемых липополисахарида (LPS) -активированную N9 микроглии на нейрональных клетках РС12 будут подробно, предлагая конкретное понимание методологии вставки сокультуры.

Protocol

Примечание: В каждом из следующих шагов должны быть выполнены в стерильных условиях в вытяжном шкафу с ламинарным потоком воздуха, как требуется для культуры клеток млекопитающих. Кроме того, общие принципы для оптимального выращивания стерильной клетки применяются, например., О?…

Representative Results

Использование вставных систем совместного культивирования особенно актуально при изучении нейровоспалительных процессов, которые наглядно демонстрируют паракринной взаимосвязи между различными сотовыми игроками центральной нервной системы. Иммунитет в ЦНС осущ…

Discussion

Самым важным шагом любой системы эксперимента вставка сокультуры на самом деле живет в выборе правильной вставки для использования. Размер пор и материал мембраны должен быть принят во внимание тщательной, не забывая учитывать тип клеток, которые будут посеяны и цель эксперимента. На?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by a Natural Sciences and Engineering Research Council (NSERC) Canada grant to MGM. JR is a NSERC-Vanier student fellow.

Materials

RPMI-1640 medium Sigma R8755 Warm in 37 °C water bath before use
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham Sigma D6421 Warm in 37 °C water bath before use, must be supplemented with 0.365 gm/L L-glutamine
Horse serum ATCC 30-2040 Warm in 37 °C water bath before use
Fetal bovine serum MultiCell 80350 Warm in 37 °C water bath before use
Nerve Growth Factor-7S from murine submaxillary gland Sigma N0513 Reconstitute the lyophilized powder in a solution of buffered saline or tissue culture medium containing 0.1–1.0% bovine serum albumin or 1-10% serum
Trypsin-EDTA solution Sigma T3924 Warm in 37 °C water bath before use
Lipopolysaccharides from Escherichia coli 055:B5 Sigma L2880 Toxic
Cell culture inserts for use with 24-well plates BD Falcon 353095 0.4 μm pores
24-well plates TrueLine TR5002 Coat with collagen before use
Routine PC12 cell culture medium Routine N9 cell culture medium
-       85% RPMI medium -       90% DMEM-F12 medium
-       10% heat-inactivated horse serum -       10% heat-inactivated horse serum
-       5% heat-inactivated fetal bovine serum
PC12 differentiation medium N9 treatment medium
-        99% RPMI medium -       99% DMEM-F12 medium
-        1% heat-inactivated fetal bovine serum -       1% heat-inactivated horse serum
-        50 ng/mL nerve growth factor
PC12 treatment medium
-        99% RPMI medium
-        1% heat-inactivated fetal bovine serum

References

  1. Grobstein, C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 172 (4384), 869-870 (1953).
  2. Hoffman, R. A. Intraepithelial lymphocytes coinduce nitric oxide synthase in intestinalepithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 278 (6), G886-G894 (2000).
  3. Zhang, W. C., et al. Regulatory T cells protect fine particulate matter-induced inflammatory responses in human umbilical vein endothelial cells. Mediators Inflamm. 2014, 869148 (2014).
  4. Vasileiadou, K., et al. alpha1-Acid glycoprotein production in rat dorsal air pouch in response to inflammatory stimuli, dexamethasone and honey bee venom. Exp. Mol. Pathol. 89 (1), 63-71 (2010).
  5. Talayev, V. Y., et al. The effect of human placenta cytotrophoblast cells on the maturation and T cell stimulating ability of dendritics cells in vitro. Clin. Exp. Immunol. 162 (1), 91-99 (2010).
  6. Elishmereni, M., et al. Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy. 66 (3), 376-385 (2011).
  7. Ishihara, Y., et al. Regulation of immunoglobulin G2 production by prostaglandin E(2) and platelet-activating factor. Infect. Immun. 68 (3), 1563-1568 (2000).
  8. Kranzer, K., Bauer, M., Lipford, G. B., Heeg, K., Wagner, H., Lang, R. CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon- gamma production and up-regulation of CD69 via induction of antigen- presenting cell-derived interferon type I and interleukin-12. Immunology. 99 (2), 170-178 (2000).
  9. Vendetti, S., Chai, J. G., Dyson, J., Simpson, E., Lombardi, G., Lechler, R. Anergic T cells inhibit the antigen-presenting function of dendritic cells. J. Immunol. 165 (3), 1175-1181 (2000).
  10. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J., Blum, S. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut. 47 (1), 79-87 (2000).
  11. Dono, M., et al. In vitro stimulation of human tonsillar subepithelial B cells: requirement for interaction with activated T cells. Eur. J. Immunol. 31 (3), 752-756 (2001).
  12. Yu, Y., et al. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J. Immunol. 166 (3), 1590-1600 (2001).
  13. Watanabe, T., Tokuyama, S., Yasuda, M., Sasaki, T., Yamamoto, T. Changes of tissue factor-dependent coagulant activity mediated by adhesion between polymorphonuclear leukocytes and endothelial cells. Jpn J. Pharmacol. 86 (4), 399-404 (2001).
  14. Krampera, M., et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 101 (9), 3722-3729 (2003).
  15. Bournival, J., Plouffe, M., Renaud, J., Provencher, C., Martinoli, M. G. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system. Oxid. Med. Cell. Longev. 2012, 921941 (2012).
  16. Bureau, G., Longpré, F., Martinoli, M. G. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J. Neurosci. Res. 86 (2), 403-410 (2008).
  17. Zhu, L., Bi, W., Lu, D., Zhang, C., Shu, X., Lu, D. Luteolin inhibits SH-SY5Y cell apoptosis through suppression of the nuclear transcription factor-κB, mitogen-activated protein kinase and protein kinase B pathways in lipopolysaccharide-stimulated cocultured BV2 cells. Exp. Ther. Med. 7 (5), 1065-1070 (2014).
  18. Luo, X., et al. BV2 enhanced the neurotrophic functions of mesenchymal stem cells after being stimulated with injured PC12. Neuroimmunomodulation. 16 (1), 28-34 (2009).
  19. Polazzi, E., Gianni, T., Contestabile, A. Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia. 36 (3), 271-280 (2001).
  20. Barger, S. W., Basile, A. S. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J. Neurochem. 76 (3), 846-854 (2001).
  21. Zujovic, V., Taupin, V. Use of cocultured cell systems to elucidate chemokine-dependent neuronal/microglial interactions: control of microglial activation. Methods. 29 (4), 345-350 (2003).
  22. Iwashita, M., et al. Valsartan, independently of AT1 receptor or PPARγ, suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes. Am. J. Physiol. Endocrinol. Metab. 302 (3), E286-E296 (2012).
  23. Oliver, E., et al. Docosahexaenoic acid attenuates macrophage-induced inflammation and improves insulin sensitivity in adipocytes-specific differential effects between LC n-3 PUFA. J. Nutr. Biochem. 23 (9), 1192-1200 (2012).
  24. Tang, S. Y., Cheah, I. K., Wang, H., Halliwell, B. Notopterygium forbesii Boiss extract and its active constituent phenethyl ferulate attenuate pro-inflammatory responses to lipopolysaccharide in RAW 264.7 macrophages. A "protective" role for oxidative stress. Chem. Res. Toxicol. 22 (8), 1473-1482 (2009).
  25. De Boer, A. A., Monk, J. M., Robinson, L. E. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model. PLoS One. 9 (1), e85037 (2014).
  26. Li, Y., Liu, L., Barger, S. W., Mrak, R. E., Griffin, W. S. Vitamin E suppression of microglial activation is neuroprotective. J. Neurosci. Res. 66 (2), 163-170 (2001).
  27. Brizuela, L., et al. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells. Mol. Oncol. 8 (7), 1181-1195 (2014).
  28. Yuan, L., Chan, G. C., Fung, K. L., Chim, C. S. RANKL expression in myeloma cells is regulated by a network involving RANKL promoter methylation, DNMT1, microRNA and TNFα in the microenvironment. Biochim. Biophys. Acta. 1843, 1834-1838 (2014).
  29. Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y., Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U. S. A. 98 (21), 12072-12077 (2001).
  30. Lawrenson, K., Grun, B., Benjamin, E., Jacobs, I. J., Dafou, D., Gayther, S. A. Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia. 12 (4), 317-325 (2010).
  31. Liu, J., et al. BCR-ABL mutants spread resistance to non-mutated cells through a paracrine mechanism. Leukemia. 22 (4), 791-799 (2008).
  32. Giuliani, N., et al. Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood. 102 (2), 638-645 (2003).
  33. Gupta, D., et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia. 15 (12), 1950-1961 (2001).
  34. Anderson, I. C., Mari, S. E., Broderick, R. J., Mari, B. P., Shipp, M. A. The angiogenic factor interleukin 8 is induced in non-small cell lung cancer/pulmonary fibroblast cocultures. Cancer Res. 60 (2), 269-272 (2000).
  35. Hoechst, B., et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces C4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 135 (1), 234-243 (2008).
  36. Karadag, A., Oyajobi, B. O., Apperley, J. F., Russell, R. G., Croucher, P. I. Human myeloma cells promote the production of interleukin 6 by primary human osteoblasts. Br. J. Haematol. 108 (2), 383-390 (2000).
  37. Garrido, S. M., Appelbaum, F. R., Willman, C. L., Banker, D. E. Acute myeloid leukemia cells are protected from spontaneous and drug- induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp. Hematol. 29 (4), 448-457 (2001).
  38. Heissig, B., Pasternak, G., Horner, S., Schwerdtfeger, R., Rossol, S., Hehlmann, R. CD14+ peripheral blood mononuclear cells from chronic myeloid leukemia and normal donors are inhibitory to short- and long-term cultured colony-forming cells. Leuk. Res. 24 (3), 217-231 (2000).
  39. Moore, M. B., Kurago, Z. B., Fullenkamp, C. A., Lutz, C. T. Squamous cell carcinoma cells differentially stimulate NK cell effector functions: the role of IL-18. Cancer Immunol Immunother. 52 (2), 107-115 (2003).
  40. Giuliana, N., et al. Human myeloma cells stimulate the receptor activator of nuclear factor- kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 100 (13), 4615-4621 (2002).
  41. Ye, Z., Haley, S., Gee, A. P., Henslee-Downey, P. J., Lamb, L. S. In vitro interactions between gamma deltaT cells, DC, and CD4+ T cells; implications for the immunotherapy of leukemia. Cytotherapy. 4 (3), 293-304 (2002).
  42. Zhang, X. M., Xu, Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res. 11 (6), 559-567 (2001).
  43. Zhang, M., et al. The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLoS One. 9 (4), e95583 (2014).
  44. Qu, C., et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int. J. Biochem. Cell. Biol. 45 (8), 1802-1812 (2013).
  45. Krassowska, A., et al. Promotion of haematopoietic activity in embryonic stem cells by the aorta-gonad-mesonephros microenvironment. Exp. Cell. Res. 312 (18), 3595-3603 (2006).
  46. Darcy, K. M., et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev. Biol. Anim. 36 (9), 578-592 (2000).
  47. Spector, J. A. Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. Plast. Reconstr. Surg. 109 (2), 631-642 (2002).
  48. Khanolkar, A., Fu, Z., Underwood, L. J., Bondurant, K. L., Rochford, R., Cannon, M. J. CD4+ T cell-induced differentiation of EBV-transformed lymphoblastoid cells is associated with diminished recognition by EBV-specific CD8+ cytotoxic T cells. J. Immunol. 170 (6), 3187-3194 (2003).
  49. Fritsch, C. Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis. J. Clin. Invest. 110 (11), 1629-1641 (2002).
  50. Abouelfetouh, A., Kondoh, T., Ehara, K., Kohumra, E. Morphological differentiation of bone marrow stromal cells into neuron-like cells after co-culture with hippocampal slice. Brain Res. 1029 (1), 114-119 (2004).
  51. Llado, J., Haenggeli, C., Maragakis, N., Snyder, E., Rothstein, J. Neural stem cells protect against glutamate-induced excitotoxicitiy and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol. Cell. Neurosci. 27 (3), 322-331 (2004).
  52. Fong, S. P., et al. Trophism of neural progenitor cells to embryonic stem cells: Neural induction and transplantation in a mouse ischemic stroke model. J. Neurosci. Res. 85 (9), 1851-1862 (2007).
  53. Gordon-Keylock, S. A., et al. Induction of hematopoietic differentiation of mouse embryonic stem cells by an AGM-derived stromal cell line is not further enhanced by overexpression of HOXB4. Stem Cells. 19 (11), 1687-1698 (2010).
  54. Yang, T., Tsang, K. S., Poon, W. S., Ng, H. K. Neurotrophism of bone marrow stromal cells to embryonic stem cells: noncontact induction and transplantation to a mouse ischemic stroke model. Cell transplant. 18 (4), 391-404 (2009).
  55. Kim, J. Y., et al. Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity via paracrine. World J. Stem Cells. 4 (11), 110-116 (2012).
  56. Mauri, M., et al. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Mol. Cell Neurosci. 49 (4), 395-405 (2012).
  57. Ichikawa, J., et al. Increased crystal-cell interaction in vitro under co-culture of renal tubular cells and adipocytes by in vitro co-culture paracrine systems simulating metabolic syndrome. Urolithiasis. 42 (1), 17-28 (2014).
  58. Zuo, L., et al. A Paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment. J. Urol. 191 (6), 1906-1912 (2014).
  59. Fan, W., Zheng, J. J., McLaughlin, B. J. An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell Dev. Biol. Anim. 38 (4), 228-234 (2002).
  60. Mierke, C. T., Ballmaier, M., Werner, U., Manns, M. P., Welte, K., Bischoff, S. C. Human endothelial cells regulate survival and proliferation of human mast cells. J. Exp. Med. 192 (6), 801-811 (2000).
  61. Beckner, M. E., Jagannathan, S., Peterson, V. A. Extracellular angio-associated migratory cell protein plays a positive role in angiogenesis and is regulated by astrocytes in coculture. Microvasc. Res. 63 (3), 259-269 (2002).
  62. Damon, D. H. VSM growth is stimulated in sympathetic neuron/VSM cocultures: role of TGF-beta2 and endothelin. Am. J. Physiol. Heart Circ. Physiol. 278 (2), H404-H411 (2000).
  63. Anna De Berardinis, M., Ciotti, M. T., Amadoro, G., Galli, C., Calissano, P. Transfer of the apoptotic message in sister cultures of cerebellar neurons. Neuroreport. 12 (10), 2137-2140 (2001).
  64. Lange-Sperandio, B., Fulda, S., Vandewalle, A., Chevalier, R. L. Macrophages induce apoptosis in proximal tubule cells. Pediatr. Nephrol. 18 (4), 335-341 (2003).
  65. Vjetrovic, J., Shankaranarayanan, P., Mendoza-Parra, M. A., Gronemeyer, H. Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. Aging Cell. 13 (3), 487-496 (2014).
  66. Fujiya, A., et al. The role of S100B in the interaction between adipocytes and macrophages. Obesity (Silver Spring). 22 (2), 371-379 (2014).
  67. Suganami, T., Nishida, J., Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler. Thromb. Vasc. Biol. 25 (10), 2062-2068 (2005).
  68. Yoshida, A., Kitajiri, S., Nakagawa, T., Hashido, K., Inaoka, T., Ito, J. Adipose tissue-derived stromal cells protect hair cells from aminoglycoside. Laryngoscope. 121 (6), 1281-1286 (2011).
  69. May, L. A., et al. Inner ear supporting cells protect hair cells by secreting HSP70. J. Clin. Invest. 123 (8), 3577-3587 (2013).
  70. Jarosz, L. M., Deng, D. M., vander Mei, H. C., Crielaard, W., Krom, B. P. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot Cell. 8 (11), 1658-1664 (2009).
  71. Dagenais, T. R., Giles, S. S., Aimanianda, V., Latgé, J. P., Hull, C. M., Keller, N. P. Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect. Immun. 78 (2), 823-829 (2010).
  72. Spiliotis, M., Lechner, S., Tappe, D., Scheller, C., Krohne, G., Brehm, K. Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int. J. Parasitol. 38 (8-9), 1025-1039 (2008).
  73. Scholzen, A., Mittag, D., Rogerson, S. J., Cooke, B. M., Plebanski, M. Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta. PLoS Pathog. 5 (8), e1000543 (2009).
  74. Fedoroff, S., Richardson, A. Quantification of Cells in Culture. Protocols for Neural Cell Culture. , 333-335 (2001).
  75. Fedoroff, S., Richardson, A. Primary Cultures of Sympathetic Ganglia. Protocols for Neural Cell Culture. , 88-89 (2001).
  76. Kreutzberg, G. W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19 (8), 312-318 (1996).
  77. Hanisch, U. K., Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10 (11), 1387-1394 (2007).
  78. Davalos, D., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8 (6), 752-758 (2005).
  79. Block, M. L., Zecca, L., Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8 (1), 57-69 (2007).
  80. Qureshi, S. T., Larivière, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., Malo, D. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615-625 (1999).
  81. Sabroe, I., Jones, E. C., Usher, L. R., Whyte, M. K., Dower, S. K. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701-4710 (2002).
  82. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Bio. 4 (5), 278-286 (2008).
  83. Spencer, K. H., Kim, M. Y., Hughes, C. C., Hui, E. E. A screen for short-range paracrine interactions. Integr. Biol. (Camb). 6 (4), 382-387 (2014).
check_url/kr/54356?article_type=t

Play Video

Cite This Article
Renaud, J., Martinoli, M. Development of an Insert Co-culture System of Two Cellular Types in the Absence of Cell-Cell Contact. J. Vis. Exp. (113), e54356, doi:10.3791/54356 (2016).

View Video