Summary

制备及<em>在体内</em>使用基于活动的探针对<em>ñ</em> -acylethanolamine酸酰胺酶

Published: November 23, 2016
doi:

Summary

这里,我们描述一个基于活动的探针的制备和使用(ARN14686,十一碳-10- ynyl- -N – [(3 S)-2-代氮杂环丁烷-3-基]氨基甲酸),允许的检测和定量促炎酶ñ-acylethanolamine酸酰胺酶的活性形式(NAAA), 在体外离体

Abstract

基于活动的蛋白谱(ABPP)是用于通过使用靶向酶的活性位点的化学探针的识别在复杂蛋白质组感兴趣的酶的方法。导入探针A记者标记允许通过在凝胶荧光扫描,蛋白质印迹,荧光显微镜,或液相色谱 – 质谱法检测标记的酶。这里,我们描述了制备和使用所述化合物ARN14686的,基于活动点击化学探针(CC-ABP),其选择性识别酶Ñ-acylethanolamine酸酰胺酶(NAAA)。 NAAA是半胱氨酸水解酶,通过去激活内源性过氧化物酶体增殖物激活受体(PPAR)-α激动剂如十六酰胺乙醇(PEA)和油酰乙醇酰胺(OEA)促进炎症。 NAAA被合成为一个无效的全长酶原,由autoproteolysis在溶酶体的酸性pH激活。定位研究ħ表明NAAA在巨噬细胞等单核细胞衍生的细胞在B淋巴细胞中表达,以及AVE。我们提供的ARN14686如何能够被用来检测和通过蛋白质印迹和荧光显微镜量化活性NAAA 离体啮齿动物组织的例子。

Introduction

常用的方法来研究的表达模式,交互和蛋白质的功能,包括用于鸟枪分析1,2,酵母液相色谱-质谱平台双杂交方法3,4体外测定法,是有限的,因为它们是无法评估在其天然状态的蛋白质的活性。基于活动的蛋白谱(ABPP)可以用来填补这一空白。在这种方法中,小分子探针能够共价结合到所关注的酶的活性位点被偶联至一个报告基团,其允许目标检测。使用点击化学(CC),记者可以集成到探针或之后发生5,6-靶接合可以引入。后者程序需要使用含有适当的化学基团,探针如末端炔或叠氮化物,其可以与许多记者试剂经由SUC生物正交反应改性H作为铜(Ⅰ)催化胡伊斯根[3 + 2]环加成7-9或Staudinger连接10,11。

最近,我们公开的化合物ARN14686作为第一ABP为体外和半胱氨酸水解酶,NAAA 12体内检测。 NAAA催化饱和和单不饱和的FAE,包括油酰乙醇酰胺(OEA)和十六酰胺乙醇(PEA),这是抗炎核受体PPAR-α13-15的内源性激动剂的水解失活。 NAAA在巨噬细胞等单核细胞衍生的细胞主要表达,以及在B淋巴细胞14,16,这表明在先天免疫应答的调节作用。所述酶在粗面内质网中合成的非活性形式和通过自我蛋白酶机构17中的细胞的酸性区室被激活。该裂解自我蛋白酶生成新N端半胱氨酸(C131在小鼠和大鼠,C126在人中),即是亲核体负责FAE水解18,19。 NAAA活动的药理学抑制改变有利于现场应用工程师16,20,21增加细胞水平的FAE合成/降解的平衡。数β内酯和β内酰胺衍生物已显示出抑制NAAA活性高效力和选择性16,22-26。这些抑制剂作用通过催化半胱氨酸16,27,28酰化。

( – [(S)-2-代氮杂环丁烷-3-基]氨基甲酸4- cyclohexylbutyl- N)16化合物ARN14686是基于全身活性,丝氨酸衍生的β内酰胺NAAA抑制剂的化学结构,ARN726设计。 ARN726的4-丁基环己基用C 9饱和脂族链轴承与叠氮化物载运记者标签随后CC缀合末端炔标签替换。我们选择了设计一个两步ABP到minimallý改变原始支架的结构,从而保持了探针NAAA的亲和力。此外,避免引入笨重标签,这样的探针可以是更适合于不是直接ABP 体内治疗。 ARN14686抑制NAAA具有高效力(hNAAA IC 50 = 6纳米,rNAAA IC 50 = 13纳米)通过形成与酶12的催化半胱氨酸的共价加合物。在活老鼠的实验表明,该探针是在捕捉NAAA在肺部表达选择性。采用高探针浓度(10μM 体外 ,10毫克/毫升静脉内,ⅳ)12时酸性神经酰胺,共享33-34%的同一性与NAAA另一个半胱氨酸酰胺酶,也被确定为一个低亲和力靶。我们也使用ARN14686研究活性NAAA在以下完全弗氏佐剂(CFA)29的施用发炎大鼠组织的存在。

在这里,我们列出了preparati协议上ARN14686( 图1)并将其应用到NAAA激活体外的调查。作为一个例子,我们描述的实验程序来可视化NAAA的CFA给药后的大鼠爪子。在这个实验中,蛋白从爪组织探针静脉注射后萃取,ABP标记蛋白质进行与生物素叠氮化物以CC。生物素化的样品使用链霉珠富集,并执行蛋白质印迹。在另一应用中,我们描述了活性NAAA的荧光显微镜在小鼠肺从探针处理的小鼠的本地化。在这种情况下,将组织切片并部分经受CC为罗丹明加成。工作流方案, 如图2所示。

Protocol

注意:所有的化学反应,应在通风橱和使用实验室工作服,手套和护目镜进行。该反应应在氮气环境中也进行。 伦理声明:我们涉及动物的程序符合有关动物用于实验和其他科学目的(DM 116192)和欧共体法规的保护意大利规定执行(EC的OJ L一分之三百五十八1986年12月18日)。 注:合成[(3 S)-2-代氮杂环丁烷-3-基]乙酸铵是用于大规模收率描述(50克N-CBZ- L-丝氨酸),但是它可以很容易地按…

Representative Results

ARN14686是基于NAAA抑制剂ARN726的支架设计。 ARN726的4-丁基环己基用C 9饱和脂族链带有终端炔标签( 图1)被取代。炔标签是为了允许使用两步标记过程的添加荧光团或通过CC一个生物素分子引入。这一功能使得ARN14686一个非常通用的工具,以探测NAAA 在体外和体内 。 这里,我们显示ARN14686的两个应…

Discussion

酶活性是在不同的层次,包括RNA转录,蛋白质合成,蛋白质易位,翻译后修饰,和蛋白质 – 蛋白质相互作用精细调节。通常,酶表达单独不占它的活性。 ABPP的开发是为了研究在其天然状态的蛋白质的活性。两个特征是必需的:共价地结合到感兴趣的酶和记者标签的活性位点的化学探针来检测探针标记的酶。

探针设计与合成的过程的关键点。探针必须具有对其靶足够亲和力和…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank the Nikon Imaging Center at Istituto Italiano di Tecnologia, Genova, Italy (NIC@IIT).

Materials

1,1’-sulfonyldiimidazole  Sigma Aldrich 367818 Harmful
2-dipyridylcarbonate Fluorochem 11331 Harmful
2-Methylbutan Sigma Aldrich M32631 Flamable, toxic,hazardous to the aquatic environment
4-(Dimethylamino)pyridine Sigma Aldrich 107700 Toxic
Acetic acid Sigma Aldrich 695092 Flammable, Corrosive
Acetonitrile  Sigma Aldrich 34998 Flammable, Toxic
Activated charcoal Sigma Aldrich 161551
Ammonium chloride Sigma Aldrich A9434 Harmful
Azide-PEG3-Biotin Jena Biosciences CLK-AZ104P4
Azide-PEG3-Fluor 545 Jena Biosciences CLK-AZ109
BCA protein assay kit Thermo Fisher Scientific 23227
Bio-spin columns Biorad 732-6204
Biotin Sigma Aldrich B4501
Blocking buffer Li-Cor Biosciences 927-40000
b-mercaptoethanol Sigma Aldrich M6250 Higly toxic
Bovin serum albumine (BSA) Sigma Aldrich A7030
Bromophenol blue Sigma Aldrich B0126
Bruker Avance III 400 Bruker
Celite Sigma Aldrich 419931 Health hazard
Ceric ammonium nitrate  Sigma Aldrich 22249 Oxidizing, Harmful
Chloral hydrate Sigma Aldrich C8383 Higly toxic
CuSO4.5H2O  Sigma Aldrich 209198 Toxic
Cyclohexadiene Sigma Aldrich 125415 Flammable, Health hazard
Cyclohexane Sigma Aldrich 34855 Flammable, Harmful, Health hazard, Environmental hazard
Dichloromethane Sigma Aldrich 34856 Harmful, Health hazard
Diethyl ether Sigma Aldrich 296082 Flammable, Harmful
Dimethyl sulfoxide (DMSO) Acros Organics 348441000
Dimethyl sulfoxide d6 (DMSO-d6) Sigma Aldrich 175943
Ethanol Sigma Aldrich 2860 Flammable, Harmful
Ethyl acetate Sigma Aldrich 34858 Flammable, Harmful
Glycerol Sigma Aldrich G5516
Irdye 680-LT Streptavidin Li-Cor Biosciences 925-68031
IRDye680-LT Streptavidin  Licor 925-68031 Briefly centrifuge before use to precipitate protein complexes
Methanol Sigma Aldrich 34966 Highly toxic
Methanol Sigma Aldrich 34860 Flammable, Toxic, Health hazard
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride Sigma Aldrich E7750 Harmful, Corrosive
N,N-diisopropylethylamine Sigma Aldrich D125806 Flammable, Corrosive, Toxic
N,N-dimethylformamide Sigma Aldrich 227056 Flammable, Harmful, Health hazard
N-Cbz-L-Serine Fluorochem  M03053 Harmful
Nikon A1 confocal microscopy Nikon Read  the user manual
NuPAGE 4-12% Bis-Tris gel Thermo Fisher Scientific NP0335BOX
Palladium on carbon Sigma Aldrich 330108
p-anisidine Sigma Aldrich A88255 Toxic, Health hazard, Environmental hazard
Paraformaldehyde sigma Aldrich 441244 Toxic, respiratory harmful, corrosive, falmable
Poly(ethylene glycol)  Sigma Aldrich P3265
ProLong Gold antifade mountant with DAPI  Thermo Fisher Scientific P36931 Avoid bubbles formation
Protease inhibitor cocktail Sigma Aldrich P8340
Sodium bicarbonate Sigma Aldrich S6014
Sodium dodecyl sulfate (SDS)  Sigma Aldrich L3771 Toxic, corrosive, falmmable
Sodium hydride  Sigma Aldrich 452912 Flammable
Sodium sulfate Sigma Aldrich 239313
Starion FLA-9000 immage scanner FUJIFILM Read  the user manual
Streptavidin agarose Thermo Fisher Scientific 20349
Sucrose Sigma Aldrich S7903
Tert-butanol Sigma Aldrich 360538 Toxic, flammable
Tetrahydrofuran Sigma Aldrich 186562 Flammable, Harmful, Health hazard
Thiourea Acros Organics 424542500 Toxic, warm at 50 °C to dissolve
Tris Sigma Aldrich RDD008
Tris(2-carboxyethyl)phosphine (TCEP) Sigma Aldrich C4706
Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) Sigma Aldrich 678937
Triton-x100 Sigma Aldrich X100 Toxic
Tween-20 Sigma Aldrich P9416
Tween-80 Sigma Aldrich P1754
Ultra turrax IKA T18 basic tissue homogenizer IKA
Undec-10-yn-1-ol Fluorochem 13739 Harmful
Urea Sigma Aldrich U5378 Toxic, warm at 50 °C to dissolve

References

  1. Gygi, S. P., Han, D. K., Gingras, A. C., Sonenberg, N., Aebersold, R. Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis. 20, 310-319 (1999).
  2. Washburn, M. P., Wolters, D., Yates, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 19, 242-247 (2001).
  3. Zhu, H., Bilgin, M., Snyder, M. Proteomics. Annu Rev Biochem. 72, 783-812 (2003).
  4. Ito, T., et al. Roles for the two-hybrid system in exploration of the yeast protein interactome. Mol Cell Proteomics. 1, 561-566 (2002).
  5. Evans, M. J., Cravatt, B. F. Mechanism-based profiling of enzyme families. Chem Rev. 106, 3279-3301 (2006).
  6. Cravatt, B. F., Wright, A. T., Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem. 77, 383-414 (2008).
  7. Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl. 41, 2596-2599 (2002).
  8. Meldal, M., Tornoe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem Rev. 108, 2952-3015 (2008).
  9. Speers, A. E., Adam, G. C., Cravatt, B. F. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc. 125, 4686-4687 (2003).
  10. Saxon, E., Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science. 287, 2007-2010 (2000).
  11. Kohn, M., Breinbauer, R. The Staudinger ligation-a gift to chemical biology. Angew Chem Int Ed Engl. 43, 3106-3116 (2004).
  12. Romeo, E., et al. Activity-Based Probe for N-Acylethanolamine Acid Amidase. ACS Chem Biol. 10, 2057-2064 (2015).
  13. Ueda, N., Yamanaka, K., Yamamoto, S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem. 276, 35552-35557 (2001).
  14. Tsuboi, K., et al. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem. 280, 11082-11092 (2005).
  15. Tsuboi, K., Takezaki, N., Ueda, N. The N-acylethanolamine-hydrolyzing acid amidase (NAAA). Chem Biodivers. 4, 1914-1925 (2007).
  16. Ribeiro, A., et al. A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation. ACS Chem Biol. 10, 1838-1846 (2015).
  17. Zhao, L. Y., Tsuboi, K., Okamoto, Y., Nagahata, S., Ueda, N. Proteolytic activation and glycosylation of N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme involved in the endocannabinoid metabolism. Biochim Biophys Acta. 1771, 1397-1405 (2007).
  18. Wang, J., et al. Amino acid residues crucial in pH regulation and proteolytic activation of N-acylethanolamine-hydrolyzing acid amidase. Biochim Biophys Acta. 1781, 710-717 (2008).
  19. West, J. M., Zvonok, N., Whitten, K. M., Wood, J. T., Makriyannis, A. Mass spectrometric characterization of human N-acylethanolamine-hydrolyzing acid amidase. J Proteome Res. 11, 972-981 (2012).
  20. Bandiera, T., Ponzano, S., Piomelli, D. Advances in the discovery of N-acylethanolamine acid amidase inhibitors. Pharmacol Res. 86, 11-17 (2014).
  21. Sasso, O., et al. Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models. Pain. 154, 350-360 (2013).
  22. Duranti, A., et al. N-(2-oxo-3-oxetanyl)carbamic acid esters as N-acylethanolamine acid amidase inhibitors: synthesis and structure-activity and structure-property relationships. J Med Chem. 55, 4824-4836 (2012).
  23. Ponzano, S., et al. Synthesis and structure-activity relationship (SAR) of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters, a class of potent N-acylethanolamine acid amidase (NAAA) inhibitors. J Med Chem. 56, 6917-6934 (2013).
  24. Solorzano, C., et al. Synthesis and structure-activity relationships of N-(2-oxo-3-oxetanyl)amides as N-acylethanolamine-hydrolyzing acid amidase inhibitors. J Med Chem. 53, 5770-5781 (2010).
  25. Vitale, R., et al. Synthesis, structure-activity, and structure-stability relationships of 2-substituted-N-(4-oxo-3-oxetanyl) N-acylethanolamine acid amidase (NAAA) inhibitors. ChemMedChem 9. 9, 323-336 (2014).
  26. Fiasella, A., et al. 3-Aminoazetidin-2-one derivatives as N-acylethanolamine acid amidase (NAAA) inhibitors suitable for systemic administration. ChemMedChem 9. 9, 1602-1614 (2014).
  27. Armirotti, A., et al. beta-Lactones Inhibit N-acylethanolamine Acid Amidase by S-Acylation of the Catalytic N-Terminal Cysteine. ACS Med Chem Lett. 3, 422-426 (2012).
  28. Nuzzi, A., et al. Potent alpha-amino-beta-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure-activity relationship (SAR) studies. Eur J Med Chem. 111, 138-159 (2016).
  29. Bonezzi, F. T., et al. An Important Role for N-Acylethanolamine Acid Amidase in the Complete Freund’s Adjuvant Rat Model of Arthritis. J Pharmacol Exp Ther. 356, 656-663 (2016).
  30. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 150, 76-85 (1985).
  31. Speers, A. E., Cravatt, B. F. Activity-Based Protein Profiling (ABPP) and Click Chemistry (CC)-ABPP by MudPIT Mass Spectrometry. Curr Protoc Chem Biol. 1, 29-41 (2009).
  32. Rybak, J. N., Scheurer, S. B., Neri, D., Elia, G. Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics. 4, 2296-2299 (2004).
  33. Penna, A., Cahalan, M. Western Blotting using the Invitrogen NuPage Novex Bis Tris minigels. J Vis Exp. (264), (2007).
  34. Giuffrida, A., Piomelli, D. Isotope dilution GC/MS determination of anandamide and other fatty acylethanolamides in rat blood plasma. FEBS Lett. 422, 373-376 (1998).
  35. Buczynski, M. W., Parsons, L. H. Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br J Pharmacol. 160, 423-442 (2010).
check_url/kr/54652?article_type=t

Play Video

Cite This Article
Romeo, E., Pontis, S., Ponzano, S., Bonezzi, F., Migliore, M., Di Martino, S., Summa, M., Piomelli, D. Preparation and In Vivo Use of an Activity-based Probe for N-acylethanolamine Acid Amidase. J. Vis. Exp. (117), e54652, doi:10.3791/54652 (2016).

View Video