Summary

Исследования в взаимодействий аминокислот и пептидов с использованием неорганических материалов с использованием одномолекулярной силовой микроскопии

Published: March 06, 2017
doi:

Summary

Здесь мы приводим протокол для измерения силы взаимодействия между хорошо определенной неорганической поверхности и либо пептидов или аминокислот путем измерения силовой спектроскопии одиночных молекул с помощью атомно-силового микроскопа (АСМ). Информация, полученная из измерений важно, чтобы лучше понять пептидный-неорганический материал раздела.

Abstract

Взаимодействие между белками или пептидами и неорганических материалов приводит к ряду интересных процессов. Например, сочетая белки с минералами приводит к образованию композитных материалов с уникальными свойствами. Кроме того, нежелательный процесс обрастания инициируется при адсорбции биомолекул, в основном белки, на поверхностях. Этот органический слой представляет собой адгезионный слой для бактерий и позволяет им взаимодействовать с поверхностью. Понимание основных сил, которые регулируют взаимодействие в органо-неорганических интерфейс Поэтому важно для многих областей исследований и может привести к разработке новых материалов для оптических, механических и биомедицинских применений. Эта статья демонстрирует технику силовой спектроскопии одиночных молекул, которая использует AFM для измерения адгезии силы между либо пептидов или аминокислот и четко определенных неорганических поверхностей. Этот метод включает в себя протокол для прикрепления биомолекул к AFMопрокинуться через ковалентную гибкий линкер и измерения силы спектроскопии одиночных молекул с помощью атомно-силового микроскопа. Кроме того, анализ этих измерений включен.

Introduction

Взаимодействие между белками и неорганических минералов приводит к построению композиционных материалов с отличительными свойствами. Это включает в себя материалы с высокой механической прочностью и уникальными оптическими свойствами. 1, 2 Например, сочетание белка коллагена с минеральной гидроксиапатита создает гибкие и жесткие кости для различных функциональных возможностей . 3 Короткие пептиды могут также связывать неорганические материалы с высокой специфичностью. 4, 5, 6 Специфичность этих пептидов использовали для конструирования новых магнитных и электронных материалов, 7, 8, 9 фабрикации наноструктурных материалов, выращивания кристаллов, 10 и синтезирующие наночастицы, 11 Понимание механизма , лежащего взаимодействия между пептидами или белками и неорганических материалов , поэтому позволит нам разработать новые композиционные материалы с улучшенными адсорбционных свойств. Кроме того, так как межфазное имплантатов с иммунным ответом опосредована белками, лучше понять взаимодействия белков с неорганическими материалами улучшит нашу способность конструировать имплантатов. Другой важной областью, которая включает в себя белки, взаимодействующие с неорганическими поверхностями является изготовление противообрастающих материалов. 12, 13, 14, 15 Биозагрязнение является нежелательным процессом , в котором организмы прикрепляются к поверхности. Она имеет много вредных последствий для нашей жизни. Например, биообрастание бактерий на медицинских приборов приводит к внутрибольничных инфекций. Биозагрязнение морских организмов на лодках и больших судах увеличивает потребление топлива. 12, 16, 17, 18

Одиночных молекул силовой спектроскопии (ОВС), с использованием АСМ, можно непосредственно измерить взаимодействие между аминокислотой или пептидом с подложкой. 19, 20, 21, 22, 23, 24, 25, 26 и другие методы , такие как фаговый дисплей, 27, 28 Пьезокварцевые (QCM) 29 или поверхностного плазмонного резонанса (SPR) 29, 30, 31, 32,исх "> 33 мера взаимодействия пептидов и белков неорганических поверхностей в натуральном выражении . 34, 35, 36 Это означает, что результаты, полученные этими методами, относятся к ансамблей молекул или агрегатов. В ОВС, один или очень мало молекул прикреплены к наконечнику AFM и их взаимодействие с желаемой подложкой измеряется. Такой подход может быть расширен для изучения сворачивания белков, потянув белка с поверхности. Кроме того, он может быть использован для измерения взаимодействия между клетками и белками и связывание антител с их лигандами. 37, 38, 39, 40 В данной статье подробно описывается , как присоединить либо пептиды или аминокислоты к наконечнику AFM с помощью химии силанола. Кроме того, в документе описывается, как выполнять измерения силы и как анализироватьРезультаты.

Protocol

1. Совет Модификация Покупка нитрида кремния (Si 3 N 4) AFM кантилеверов с кремниевыми наконечниками (номинальный радиус кантилевера ~ 2 нм). Чистить каждый AFM кантилевера путем погружения в безводном этаноле в течение 20 мин. Высушивают при комнатной температуре. Затем ?…

Representative Results

Рисунок 1 демонстрирует процедуру изменения наконечника. На первом этапе, плазменной обработкой изменяет поверхность наконечника из нитрида кремния. Кончик представляет ОН-группы. Эти группы затем реагируют с силанами. В конце этого этапа, поверхность након…

Discussion

Шаги 1.3, 1.4 и 1.7 в протоколе следует проводить с большим осторожностью и в очень мягкой форме. На этапе 1.3, кончик не должен быть в контакте с силановой смеси, и процесс силанизация следует проводить в инертной атмосфере (свободной от влаги). 45 Это делается для того , чтобы предо…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Marie Curie International Reintegration Grant (EP7). P. D. acknowledges the support of the Israel Council for Higher Education.

Materials

Silicon nitride (Si3N4) AFM cantilevers with silicon tips Bruker (Camarilo, CA, USA) MSNL10, nominal cantilevers radius ~2 nm 
Methyltriethoxysilane  Acros Organics (New Jersey, USA) For Silaylation of the AFM tip 
3-(Aminopropyl) triethoxysilane Sigma-Aldrich (Jerusalem, Israel) Used for tip modification 
Triisopropylsilane Sigma-Aldrich (Jerusalem, Israel) Used for tip modification
N-Ethyldiisopropylamine Alfa-Aesar (Lancashire, UK) Used for tip modification
Triethylamine Alfa-Aesar (Lancashire, UK) Used for tip modification
Piperidine Alfa-Aesar (Lancashire, UK) Used for tip modification
Fluorenylmethyloxycarbonyl-PEG-N-hydroxysuccinimide  (Fmoc-PEG-NHS) Iris Biotech GmbH (Deutschland, Germany) Used as the covalent flexible linker  (MW = 5000 Da)
2-(1H-benzotriazol-1-yl)-1,1,3,3,-tetramethyluronium hexafluorophosphate (HBTU) Alfa Aser (Heysham, England) Used as a coupling reagent. 
N-methyl-2-pyrrolidone (NMP) Acros Organics (New Jersey, USA) Used as Solvent in Tip modification procedure
DMF (dimethylformamide) Merck (Darmstadt, Germany) Used as Solvent in Tip modification procedure
Trifluoro acetic acid (TFA) Merck (Darmstadt, Germany)
Acetic anhydride Merck (Darmstadt, Germany)
Peptides GL Biochem (Shanghai, China).
Phenylalanine and Tyrosine  Biochem (Darmstadt, Germany) 
30% TiO2 dispersion in the mixture of solvent 2-(2-Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP) Applied Vision Laboratories (Jerusalem, Israel) (30%) in the mixture of solvent 2-(2 Methoxyethoxy) ethanol (DEGME) and Ethyl 3-Ethoxypropionate (EEP)
Mica substrates TED PELLA, INC. (Redding, California, USA) 9.9 mm diameter

References

  1. Addadi, L., Weiner, S. Control and design principles in biological mineralization. Angew. Chem., Int. Ed. 31 (2), 153-169 (1992).
  2. Meyers, M. A., Chen, P. Y., Lin, A. Y. M., Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53 (1), 1-206 (2008).
  3. Villee, C. A. J. Book Review. Engl. J. Med. 309 (4), 247-248 (1983).
  4. Vallee, A., Humblot, V., Pradier, C. -. M. Peptide interactions with metal and oxide surfaces. Acc. Chem. Res. 43 (10), 1297-1306 (2010).
  5. Peelle, B. R., Krauland, E. M., Wittrup, K. D., Belcher, A. M. Design criteria for engineering inorganic material-specific peptides. Langmuir. 21 (15), 6929-6933 (2005).
  6. Gabryelczyk, B., Szilvay, G. R., Linder, M. B. The structural basis for function in diamond-like carbon binding peptides. Langmuir. 30 (29), 8798-8802 (2014).
  7. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K., Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nat. Mater. 2 (9), 577-585 (2003).
  8. Tamerler, C., Sarikaya, M. Molecular biomimetics: Utilizing nature’s molecular ways in practical engineering. Acta Biomater. 3 (3), 289-299 (2007).
  9. Seker, U. O. S., Demir, H. V. Material binding peptides for nanotechnology. Molecules. 16 (2), 1426-1451 (2011).
  10. Green, J. J., et al. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 7 (4), 874-879 (2007).
  11. Grohe, B., et al. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J. Am. Chem. Soc. 129 (48), 14946-14951 (2007).
  12. Maity, S., Nir, S., Zada, T., Reches, M. Self-assembly of a tripeptide into a functional coating that resists fouling. Chem. Commun. 50 (76), 11154-11157 (2014).
  13. Das, P., Yuran, S., Yan, J., Lee, P. S., Reches, M. Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles. Chem. Commun. 51 (25), 5432-5435 (2015).
  14. Burg, K. J. L., Porter, S., Kellam, J. F. Biomaterial developments for bone tissue engineering. Biomaterials. 21 (23), 2347-2359 (2000).
  15. Weiger, M. C., et al. Quantification of the binding affinity of a specific hydroxyapatite binding peptide. Biomaterials. 31 (11), 2955-2963 (2010).
  16. Pettitt, M. E., Henry, S. L., Callow, M. E., Callow, J. A., Clare, A. S. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta. Biofouling. 20 (6), 299-311 (2004).
  17. Schultz, M. P., Finlay, J. A., Callow, M. E., Callow, J. A. Three models to relate detachment of low form fouling at laboratory and ship scale. Biofouling. 19, 17-26 (2003).
  18. Cao, S., Wang, J., Chen, H., Chen, D. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin. 56 (7), 598-612 (2010).
  19. Wei, Y., Latour, R. A. Correlation between desorption force measured by Atomic Force Microscopy and adsorption free energy measured by surface plasmon resonance spectroscopy for peptide-surface interactions. Langmuir. 26 (24), 18852-18861 (2010).
  20. Li, Q., et al. AFM-based force spectroscopy for bioimaging and biosensing. RSC Advances. 6, 12893-12912 (2016).
  21. Meibner, R. H., Wei, G., Ciacchi, L. C. Estimation of the free energy of adsorption of a polypeptide on amorphous SiO2 from molecular dynamics simulations and force spectroscopy experiments. Soft Matter. 11 (31), 6254-6265 (2015).
  22. Xue, Y., Li, X., Li, H., Zhang, W. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun. 5, 4348 (2014).
  23. Razvag, Y., Gutkin, V., Reches, M. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy. Langmuir. 29, 10102-10109 (2013).
  24. Das, P., Reches, M. Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. Nanoscale. 8, 15309-15316 (2016).
  25. Das, P., Reches, M. Review insights into the interactions of amino acids and peptides with inorganic materials using single molecule force spectroscopy. Bioploymers-Pept. Sci. 104, 480-494 (2015).
  26. Maity, S., et al. Elucidating the mechanism of interaction between peptides and inorganic surfaces. Phys. Chem. Chem. Phys. 17 (23), 15305-15315 (2015).
  27. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature. 405 (6787), 665-668 (2000).
  28. Tamerler, C., Oren, E. E., Duman, M., Venkatasubramanian, E., Sarikaya, M. Adsorption Kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir. 22 (18), 7712-7718 (2006).
  29. Santos, O., Kosoric, J., Hector, M. P., Anderson, P., Lindh, L. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry. J. Colloid Interface Sci. 318 (2), 175-182 (2008).
  30. Evans, E., Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72 (4), 1541-1555 (1997).
  31. Micksch, T., Liebelt, N., Scharnweber, D., Schwenzer, B. Investigation of the peptide adsorption on ZrO2, TiZr, and TiO2 surfaces as a method for surface modification. ACS Appl. Mater. Interfaces. 6 (10), 7408-7416 (2014).
  32. Patwardhan, S. V., et al. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J. Am. Chem. Soc. 134 (14), 6244-6256 (2012).
  33. Thyparambil, A. A., Wei, Y., Latour, R. A. Determination of peptide-surface adsorption free energy for material surfaces not conducive to SPR or QCM using AFM. Langmuir. 28 (13), 5687-5694 (2012).
  34. Hnilova, M., et al. Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir. 24 (21), 12440-12445 (2008).
  35. Sano, K., Sasaki, H., Shiba, K. Utilization of the pleiotropy of a peptidic aptamer to fabricate heterogeneous nanodot-containing multilayer nanostructures. J. Am. Chem. Soc. 128 (5), 1717-1722 (2006).
  36. Chen, H., Su, X., Neoh, K. -. G., Choe, W. -. S. Context-dependent adsorption behavior of cyclic and linear peptides on metal oxide surfaces. Langmuir. 25 (3), 1588-1593 (2008).
  37. Zlatanova, J., Lindsay, S. M., Leuba, S. H. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 74 (1-2), 37-61 (2000).
  38. Wang, C. Z., Yadavalli, V. K. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron. 60, 5-17 (2014).
  39. Galler, K., Brautigam, K., Grobe, C., Popp, J., Neugebauer, U. Making a big thing of a small cell – recent advances in single cell analysis. Analyst. 139 (6), 1237-1273 (2014).
  40. Carvalho, F. A., Martins, I. C., Santos, N. C. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality. Arch. Biochem. Biophys. 531 (1-2), 116-127 (2013).
  41. Azoubel, S., Magdassi, S. Controlling adhesion properties of SWCNT-PET films prepared by wet deposition. ACS Appl. Mater. Interfaces. 6 (12), 9265-9271 (2014).
  42. Jaschke, M., Butt, H. J. Height calibration of optical-lever atomic-force microscopes by simple laser interferometry. Rev. Sci. Instrum. 66 (2), 1258-1259 (1995).
  43. Evans, E., Kinoshita, K., Simon, S., Leung, A. Long-lived, high-strength states of ICAM-1 bonds to beta(2) integrin, I: Lifetimes of bonds to recombinant alpha(L) beta(2) under force. Biophys. J. 98 (8), 1458-1466 (2010).
  44. Bouchiat, C., et al. Estimating the persistence length of a Worm-Like Chain molecule from force-extension measurements. Biophys. J. 76 (1), 409-413 (1999).
  45. Pick, C., Argento, C., Drazer, G., Frechette, J. Micropatterned Charge Heterogeneities via Vapor Deposition of Aminosilanes. Langmuir. 31 (39), 10725-10733 (2015).
  46. Berquand, A., et al. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir. 21, 5517-5523 (2005).
  47. Kienberger, F., et al. Recognition Force Spectroscopy Studies of the NTA-His6 Bond. Single Molecules. 1, 59-65 (2000).
  48. Tong, Z., Mikheikin, A., Krasnoslobodtsev, A., Lv, Z., Lyubchenko, Y. L. Novel polymer linkers for single molecule AFM force spectroscopy. Methods. 60, 161-168 (2013).
  49. Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 96, 1533-1554 (1996).
  50. Andolfi, L., Bizzarri, A. R., Cannistraro, S. Electron tunneling in a metal-protein-metal junction investigated by scanning tunneling and conductive atomic force spectroscopies. Appl. Phys. Lett. 89, 183125 (2006).
check_url/kr/54975?article_type=t

Play Video

Cite This Article
Das, P., Duanias-Assaf, T., Reches, M. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy. J. Vis. Exp. (121), e54975, doi:10.3791/54975 (2017).

View Video