Summary

小鼠主动脉夹层损伤:高效<em>体内</em>平滑肌细胞增殖和内皮功能模型

Published: June 11, 2017
doi:

Summary

心血管手术后的再狭窄(旁路手术,血管成形术或支架置入术)是降低这些手术的耐久性的重大问题。理想的治疗方法是抑制平滑肌细胞(VSMC)的增殖,同时促进内皮的再生。我们描述了同时评估体内VSMC增殖和内皮功能的模型。

Abstract

动脉重建,无论是血管成形术还是旁路手术,都涉及医源性创伤,引起内皮细胞破裂和血管平滑肌细胞(VSMC)增殖。常见的小鼠模型研究小血管如颈动脉和股动脉。这里我们描述一种体内系统,其中VSMC增殖和内皮屏障功能可以在大型血管中同时进行评估。我们研究了C57BL / 6小鼠肾下主动脉对损伤的反应。主动脉从左肾静脉到主动脉分叉,用棉花头施放器以5秒持续时间进行30次透壁压迫。用常规组织学评估形态学变化。从腔表面到外膜测量主动脉壁厚度。用DAPI和α-肌动蛋白进行EdU整合和反染色以证明VSMC增殖。激活ERK1 / 2,一种已知的内膜增生形成调节剂是阻止的由Western Blot分析开采。通过B细胞,T细胞和巨噬细胞的免疫组织化学测定炎症的作用用扫描电子显微镜(SEM)观察内皮的内表面部分。用伊文思蓝染色测定内皮屏障功能。透壁性损伤导致主动脉壁增厚。这种损伤引起VSMC增殖,损伤后3天最突出,ERK1 / 2的早期激活和p27 kip1表达降低。损伤不会导致血管壁中增加的B细胞,T细胞或巨噬细胞浸润。损伤导致部分内皮细胞剥蚀和细胞 – 细胞接触丧失。损伤导致内皮屏障功能的显着损失,七天后恢复到基线。小鼠透壁性钝性主动脉损伤模型提供了一种同时研究大血管中VSMC增殖和内皮屏障功能的有效系统。

Introduction

再狭窄 遵循心血管手术(旁路手术,血管成形术或支架置入术)是降低这些手术的耐久性的重大问题。所有血运重建手术都受到再狭窄的困扰。目前防止再狭窄的策略(药物洗脱支架和药物包衣球囊)抑制血管平滑肌细胞(VSMC)和内皮细胞增殖(EC)。因此,这些干预措施可以预防VSMC介导的再狭窄,而且可以防止内皮细胞的再生。没有完整的内皮,患者需要使用有效的抗血小板药物,以降低出血并发症风险的原位血栓形成的风险。理想的治疗方法是抑制VSMC增殖,同时促进内皮再生。因此,需要同时研究VSMC增殖和内皮屏障功能。

目前来看,再狭窄的小鼠模型1 。这些模型包括颈动脉结扎和股动脉线损伤2 。主动脉模型包括支架置入3 ,球囊损伤4和主动脉同种异体移植5 。所有目前的型号都是有限的。颈动脉结扎产生流动介导的新生内膜损伤并且不具有内皮损伤。此外,颈动脉和股动脉与人血管相比,细胞层的折叠多少,限制了它们的平移值。直径约1.3毫米的小鼠主动脉是接近临床相关(冠状动脉)人动脉(3)的唯一血管。

尽管鼠主动脉疾病模型具有翻译潜力,但目前的模型有局限性。这些模型需要先进的显微外科技术和专门的设备,如血管成形术气球和支架。在这里,我们现在一种新颖的,可重复的技术,以同时诱导VSMC增殖并破坏内皮屏障功能。

Protocol

道德声明:动物处理方案由马里兰大学机构动物保护和使用委员会(IACUC)批准(协议号0416009),并按照AAALAC-International标准进行。 手术程序 麻醉技术 在121°C蒸汽灭菌30分钟后,将所有用于生存手术的仪器灭菌。 通过经精密蒸发器输送的100%O 2和2.5%异氟烷的感应箱诱导麻醉。后感应,中止异氟烷并用O 2冲洗室。 ?…

Representative Results

切片嵌入OCT的横断面主动脉切片,用苏木精和伊红染色,然后用Verhoeff-Van Gieson(VVG)染色法染色,鉴定内外弹性片7 。与用假手术治疗的动物的主动脉相比,剖腹术和单独的小肠动员相比,粉碎性损伤导致主动脉壁增厚。损伤后3天(42.2±1.7μm,单独用于剖腹手术时为22.1±1.1μm),外膜厚度与外膜距离为止( 图2A-B )。损伤导致细胞具有更圆?…

Discussion

我们已经描述了导致内侧增生和内皮屏障功能障碍的鼠主动脉损伤模型的影响。沿主动脉内膜的部分EC分离伴随细胞细胞接触的丧失和细胞突起的增强。相应地,内皮屏障功能受到显着损害,刺激了丝裂原敏感信号传导途径,导致VSMC的增殖和血管壁的增厚。这种模式的优点是在技术上比其他主动脉疾病模型更容易学习和执行,并允许同时评估对损伤和内皮功能的增殖反应。该协议的关键步骤是实?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢马里兰大学医学院电子显微镜核心设备的谢汝清博士在技术支持下处理扫描电子显微镜样品。

Materials

Ocular lubricant Dechra 17033-211-38 Pharmaceutical agents
Isoflurane VetOne 502017 Pharmaceutical agents
Carprofen Zoetis 26357 Pharmaceutical agents
Precision vaporizer Summit Medical 10675 Surgical supplies
Charcoal scavenger Bickford Inc. 80120 Surgical supplies
Isothermal pad Harvard Apparatus 50-7053-R Surgical supplies
Sterile cotton-tipped applicator Fisher Scientific 23-400-124 Surgical supplies
4-0 absorbable monofilament suture  Ethicon, Inc J310 Surgical supplies
5-0 non-absorbable monofilament suture Ethicon,Inc 1666 Surgical supplies
21-gauge x 1 inch needle BD Biosciences 305165 Surgical supplies
25-gauge x 1 inch  needle BD Biosciences 305125 Surgical supplies
Dry sterilizer Cellpoint  7770 Surgical supplies
Fine scissors Fine Science Tools 14058-09 Surgical instruments
Adson forceps Fine Science Tools 11006-12 Surgical instruments
Dumont #5 fine forceps Fine Science Tools 11254-20 Surgical instruments
Vannas Spring Scissors 3mm cutting edge Fine Science Tools 15000-00 Surgical instruments
Needle driver Fine Science Tools 91201-13 Surgical instruments
Scalpel handle #4 Fine Science Tools 10004-13 Surgical instruments
Scalpel blades #10 Fine Science Tools 10010-00 Surgical instruments
PBS  Lonza 17-516F Reagents for tissue processing
Evans Blue Sigma-Aldrich E2129 Reagents for tissue processing
Paraformaldehyde Sigma-Aldrich P6148 Reagents for tissue processing
Modeling wax Bego 40001 Reagents for tissue processing
OCT compound Tissue-Tek Sakura 4583 Reagents for tissue processing
Mayer's hematoxylin solution Sigma-Aldrich MHS16 Reagents for immunohistological analysis
Eosin Y solution alcoholic  Sigma-Aldrich HT110316 Reagents for immunohistological analysis
Elastin stain kit Sigma-Aldrich HT25A Reagents for immunohistological analysis
Click-it Edu Alexa-488 Imaging Kit Invitrogen C10337 Reagents for immunohistological analysis
Anti-Erk1/2 antibody Cell Signaling Technology 4695 Reagents for immunohistological analysis
Anti-phospho-Erk1/2 antibody Cell Signaling Technology 4370 Reagents for immunohistological analysis
Anti-p27kip1 antibody Cell Signaling Technology 3698 Reagents for immunohistological analysis
Trichloroacetic acid Sigma-Aldrich T9159 Reagents for immunohistological analysis

References

  1. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6 (4), 389-395 (2000).
  2. Carmeliet, P., Moons, L., Collen, D. Mouse models of angiogenesis, arterial stenosis, atherosclerosis and hemostasis. Cardiovasc Res. 39 (1), 8-33 (1998).
  3. Baker, A. B., et al. Heparanase Alters Arterial Structure, Mechanics, and Repair Following Endovascular Stenting in Mice. Circ Res. 104 (3), 380-387 (2009).
  4. Petrov, L., Laurila, H., Hayry, P., Vamvakopoulos, J. E. A mouse model of aortic angioplasty for genomic studies of neointimal hyperplasia. J Vasc Res. 42 (4), 292-300 (2005).
  5. Li, J., et al. Vascular smooth muscle cells of recipient origin mediate intimal expansion after aortic allotransplantation in mice. Am J Path. 158 (6), 1943-1947 (2001).
  6. Radu, M., Chernoff, J. An in vivo assay to test blood vessel permeability. J Vis Exp. (73), e50062 (2013).
  7. Turbett, G. R., Sellner, L. N. The use of optimal cutting temperature compound can inhibit amplification by polymerase chain reaction. Diagn Mol Pathol. 6 (5), 298-303 (1997).
  8. Puchtler, H., Waldrop, F. S. On the mechanism of Verhoeff’s elastica stain: a convenient stain for myelin sheaths. Histochem. 62 (3), 233-247 (1979).
  9. Salic, A., Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A. 105 (7), 2415-2420 (2008).
  10. Nelson, P. R., Yamamura, S., Mureebe, L., Itoh, H., Kent, K. C. Smooth muscle cell migration and proliferation are mediated by distinct phases of activation of the intracellular messenger mitogen-activated protein kinase. J Vasc Surg. 27 (1), 117-125 (1998).
  11. Rzucidlo, E. M. Signaling pathways regulating vascular smooth muscle cell differentiation. Vascular. 17, S15-S20 (2009).
  12. Aoki, T., Sumii, T., Mori, T., Wang, X., Lo, E. H. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke. 33 (11), 2711-2717 (2002).
  13. Yu, D., et al. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS One. 10 (11), e0141397 (2015).
  14. Banai, S., et al. Rabbit ear model of injury-induced arterial smooth-muscle cell-proliferation – kinetics, reproducibility, and implications. Circ Res. 69 (3), 748-756 (1991).
check_url/kr/55201?article_type=t

Play Video

Cite This Article
Yu, D., Makkar, G., Sarkar, R., Strickland, D. K., Monahan, T. S. Murine Aortic Crush Injury: An Efficient In Vivo Model of Smooth Muscle Cell Proliferation and Endothelial Function. J. Vis. Exp. (124), e55201, doi:10.3791/55201 (2017).

View Video