Summary

PIP-on-a-chip: un estudio sin etiquetas de las interacciones proteína-fosfoinositida

Published: July 27, 2017
doi:

Summary

Aquí presentamos una bicapa lipídica soportada en el contexto de una plataforma microfluídica para estudiar las interacciones proteína-fosfoinositido utilizando un método libre de etiquetas basado en la modulación del pH.

Abstract

Numerosas proteínas celulares interactúan con las superficies de la membrana para afectar los procesos celulares esenciales. Estas interacciones pueden dirigirse hacia un componente lipídico específico dentro de una membrana, como en el caso de fosfoinositidos (PIP), para asegurar una localización y / o activación subcelular específica. Los PIP y los dominios celulares de unión a PIP se han estudiado ampliamente para comprender mejor su papel en la fisiología celular. Se aplicó un ensayo de modulación del pH en bicapas lipídicas (SLB) como una herramienta para estudiar las interacciones proteína-PIP. En estos estudios, se usó fosfatidiletanolamina conjugada con orto- sulforeamina B sensible al pH para detectar interacciones proteína-PIP. Tras la unión de una proteína a una superficie de membrana que contiene PIP, se modula el potencial interfacial ( es decir, cambio en el pH local), desplazando el estado de protonación de la sonda. Se presenta un estudio de caso del uso exitoso del ensayo de modulación del pH usando fosfolipasa C delta1 Pleckstren la homología (PH PLC-δ1) dominio y fosfatidilinositol 4,5-bifosfato (PI (4,5) P 2) la interacción como un ejemplo. La aparente constante de disociación ( K d, app ) para esta interacción fue 0,39 ± 0,05 μ M, similar a K d, app valores obtenidos por otros. Como se observó anteriormente, el dominio PH PLC-δ1 es PI (4,5) P 2 específico, muestra unión más débil hacia fosfatidilinositol 4-fosfato, y no se une a SLB de fosfatidilcolina pura. El ensayo de PIP sobre un chip es ventajoso con respecto a los ensayos de unión a PIP tradicionales, incluyendo, pero sin limitarse a, bajo volumen de muestra y sin requisitos de marcado de ligando / receptor, la capacidad de probar interacciones de membrana de alta y baja afinidad con Grandes moléculas, y una relación señal / ruido mejorada. En consecuencia, el uso del enfoque PIP-on-a-chip facilitará la elucidación de mecanismos de una amplia gama de interacciones de membrana. Además, este método podría ser uEn la identificación de terapéuticos que modulan la capacidad de la proteína para interactuar con las membranas.

Introduction

Las innumerables interacciones y procesos bioquímicos tienen lugar en superficies de membrana fluidas bidimensionales. Los organelos cerrados con membrana en células eucariotas son únicos no sólo en los procesos bioquímicos y su proteoma asociado, sino también en su composición lipídica. Una clase excepcional de fosfolípidos es phosphoinositides (PIPs). Aunque constituyen sólo el 1% del lipidoma celular, desempeñan un papel crucial en la transducción de señales, autofagia y tráfico de membranas, entre otros 1 , 2 , 3 , 4 . La fosforilación dinámica del grupo cabeza de inositol por quinasas PIP celular da lugar a siete grupos de cabeza PIP que son mono-, bis- o tris-fosforilados 5 . Adicionalmente, los PIPs definen la identidad subcelular de las membranas y sirven como sitios de acoplamiento de membrana especializados para proteínas / enzimas que contienen uno o más fosfoinosPor ejemplo, Homología de Pleckstrin (PH), Homología de Phox (PX), y Homología N-terminal de epsina (ENTH) 6 , 7 . Uno de los dominios mejor estudiados de unión PIP-es fosfolipasa C (PLC) dominio PH -δ1 que interactúa específicamente con fosfatidilinositol 4,5-bifosfato (PI (4,5) P 2) dentro de una alta afinidad rango micromolar nanomolar bajo 8 , 9 , 10 , 11 .

Se han desarrollado una variedad de métodos cualitativos y cuantitativos in vitro para estudiar el mecanismo, la termodinámica y la especificidad de estas interacciones. Entre los ensayos de unión a PIP más comúnmente utilizados están la resonancia de plasmón de superficie (SPR), la calorimetría isotérmica (ITC), la espectroscopia de resonancia magnética nuclear (NMR), el ensayo de flotación / sedimentación de liposomas y las transferencias lipídicas (tiras de grasa / PIP)12 , 13 . A pesar de que se utilizan ampliamente, todos ellos tienen muchas desventajas. Por ejemplo, SPR, ITC y RMN requieren grandes cantidades de muestra, instrumentación costosa y / o personal capacitado 12 , 13 . Algunos formatos de ensayo tales como las transferencias lipídicas basadas en anticuerpos utilizan formas de PIP solubles en agua y las presentan de una manera no fisiológica 12 , 14 , 15 , 16 . Además, las transferencias de lípidos no se pueden cuantificar de forma fiable y con frecuencia han dado lugar a falsas observaciones positivas / negativas 12 , 17 , 18 . Para superar estos desafíos y mejorar el conjunto actual de herramientas, se estableció un nuevo método libre de etiquetas basado en una bicapa lipídica soportada (SLB) en el contexto de am Icrofluidic plataforma, que se aplicó con éxito al estudio de la proteína-PIP interacciones ( Figura 1 ] [ 19] .

La estrategia empleada para detectar las interacciones proteína-PIP se basa en la detección de la modulación del pH. Esto implica un colorante sensible al pH que tiene orto -Sulforhodamine B (o SRB) directamente conjugado con grupo de cabeza fosfatidiletanolamina lípidos 20. La sonda o SRB-POPE (Figura 2A) es altamente fluorescente a pH bajo y se inactivó a pH alto con un pKa en torno a 6,7 dentro de 7,5% en moles de PI (4,5) P 2 SLB que contiene (figura 5B). Dominio PH PLC-δ1 se ha utilizado ampliamente para la validación de metodologías proteína-PIP-de unión debido a su alta especificidad hacia PI (4,5) P 2 (Figura 5A) 21, 22,"> 23, 24, 25 .Hence, razonó que el dominio PLC-δ1 PH se puede utilizar para poner a prueba su unión a PI (4,5) P 2 a través del ensayo de PIP-on-a-chip. El dominio PH constructo Utilizado en este estudio tiene una carga positiva neta (pI 8.4), y por lo tanto atrae a OH iones ( Figura 5C ). Al unirse a PI (4,5) P 2 -contiene SLBs, el dominio PH lleva a OH superficie de la membrana, que a su vez modula el potencial interfacial y desplaza el estado de protonación de O SRB-POPE (Figura 5C) 26. en función de la concentración de dominio PH, la fluorescencia se inactiva (figura 6A). por último, la transmisión de datos normalizada es ajustarse a una isoterma de unión para determinar la afinidad de la interacción PH dominio-PI (4,5) P 2 (Figura 6B, 6C). <Pabellón

En este estudio, se proporciona un protocolo detallado para realizar la unión de proteínas a PIB que contienen SLBs dentro de una plataforma microfluídica. Este protocolo lleva al lector a ensamblar el dispositivo microfluídico y la preparación de la vesícula a la formación de SLB y la unión a proteínas. Además, las direcciones para el análisis de datos para extraer información afinidad por el PLC-δ1 PH dominio de PI (4,5) la interacción P 2 se proporcionan.

Protocol

1. Limpieza de los cubreobjetos de vidrio Solución diluida de limpieza 7x (ver Tabla de Materiales) 7 veces con agua desionizada en un recipiente de vidrio de borosilicato de profundidad 100 mm con un fondo plano y calentar hasta 95 ° C sobre una placa caliente nivel durante 20 min o hasta que la solución turbia se vuelve clara . NOTA: La solución estará caliente, tenga cuidado para evitar lesiones corporales. La Solución de Limpieza 7x es una mezcla patentada de hexafluorofosfat…

Representative Results

Se utilizó el ensayo de modulación del pH para estudiar la PLC-δ1 dominio PH-PI (4,5) P 2 interacción dentro de un PIP-on-a-chip microdevice ( Figura 1 ]. A través de un protocolo detallado, hemos demostrado cómo preparar y ensamblar los componentes del dispositivo microfluídico, hacer pequeñas vesículas unilamelares (SUVs) ( Figura 2 ), forma SLBs dentro de un dispositivo ( Figura 3</str…

Discussion

Cada variante PIP, aunque a bajas concentraciones, está presente en la superficie citosólica de organelos específicos donde contribuyen al establecimiento de una composición física única y especificidad funcional de la membrana organelar 1 . Uno de los usos más importantes de los PIPs es como una plataforma de acoplamiento específica para la multitud de proteínas que requieren localización subcelular específica y / o la activación [ 6 , <sup class="x…

Disclosures

The authors have nothing to disclose.

Acknowledgements

DS y CEC fueron apoyados, en parte, por la concesión AI053531 (NIAID, NIH); SS y PSC fueron apoyados por la subvención N00014-14-1-0792 (ONR).

Materials

Coverslip
Glass Coverslips: Rectangles Fisher Scientific 12-544B 22 x 40 x 0.16 – 0.19 mm, No. 1 1/2; Borosilicate Glass
7X Cleaning Solution MP Biomedicals 976670 Detergent
PYREX Crystallizing Dish Corning 3140-190 Borosilicate glass dish with a flat bottom; Diameter x Height (190 x 100 mm); Distributor: VWR (89090-700)
Sentry Xpress 2.0 Paragon Industries SC-2 Kiln
Name Company Catalog Number Comments
PDMS
Sylgard 184 Silicone Elastomer Kit Dow Corning  4019862 Polydimethylsiloxane (PDMS); Distributor: Ellsworth Adhesives
PYREX Desiccator VWR 89134-402 Vacuum Rated
Biopsy punch Harris 15110-10 Harris Uni-Core; 1.0 mm diameter; Miltex Biopsy Punch with Plunger (Cat. No. 15110-10) can be used as an alternative
Name Company Catalog Number Comments
Device
Plasma Cleaning System PlasmaEtch PE25-JW 2-stage Direct Drive Oil Vacuum Pump, O2 service (Krytox Charged)
Digital Hot Plate Benchmark H3760-H Purchased through Denville Scientific (Cat. No. 1005640)
Frosted Micro Slides VWR 48312-003 Frosted, Selected, and Precleaned; Made of Swiss Glass; Thickness: 1 mm; Dimensions: 75 x 25 mm; GR 144
Name Company Catalog Number Comments
Mold
AutoCAD Autodesk v.2016 Drafting software for the photomask design
Photomask CAD/Art Services N/A Design with black background and clear features was printed at 20k dpi resolution on a transparent mask (5 x 7 in) by CAD/Art Services
Silicone Wafers University Wafer 1575 Prime Grade, Single Side Polished; 100 mm (4 inch) Diameter; 525 um Thickness
SU-8 50 MicroChem Corp. N/A Negative Tone Photoresist; Penn State Nanofabrication Facility Property
SU-8 Developer MicroChem Corp. N/A Penn State Nanofabrication Facility Property
Name Company Catalog Number Comments
SUV
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Avanti Polar Lipids 850457C POPC
L-α-phosphatidylinositol-4-phosphate Avanti Polar Lipids 840045X PI4P
L-α-phosphatidylinositol-4,5-bisphosphate  Avanti Polar Lipids 840046X PI(4,5)P2
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine Avanti Polar Lipids 850757C POPE; Required for the synthesis of oSRB-POPE
Lissamine Rhodamine B Sulfonyl Chloride (mixed isomers) ThermoFisher Scientific L-20 Required for the synthesis of oSRB-POPE
pH Sensitive Fluorescent Lipid Probe (oSRB-POPE) In-house N/A In-house Synthesis (Huang D. et al. 2013)
Glass Scintillation Vial VWR 66022-065 20 mL volume capacity
Aquasonic 250D VWR N/A Ultrasonic Water Bath
Nuclepore Track-Etched Membranes Whatman 110605 Polycarbonate Membrane; Diameter: 25 mm; Pore Size: 0.1 um; Distributor: Sigma-Aldrich
Chloroform VWR CX1054-6 HPLC grade
LIPEX Extruder Transferra Nanosciences T.001 LIPEX 10 mL Thermobarrel Extruder
Viscotek 802 DLS Malvern Instruments N/A Dynamic Light Scattering; Penn State X-Ray Crystallography Facility Property
Name Company Catalog Number Comments
Data Analysis
GraphPad Prism GraphPad Software v.6 Curve-fitting software for data analysis
Name Company Catalog Number Comments
Microscope
Axiovert 200M Epifluorescence Microscope Carl Zeiss Microscopy N/A Microscope
AxioCam MRm Camera Carl Zeiss Microscopy N/A Camera
X-Cite 120 Excelitas Technologies N/A Light Source
Alexa 568 Filter Set Carl Zeiss Microscopy N/A Ex/Em 576/603 nm
AxioVision LE64 v.4.9.1.0 Software Carl Zeiss Microscopy N/A Image Processing Software
Name Company Catalog Number Comments
기타
Tips VWR 10034-132 200 uL pipette tips; Thin and smooth tip for applying the protein solution into the microfluidic channel
Tips VWR 53509-070 10 uL pipette tips; Thin and smooth tip for applying the vesicle solution into the microfluidic channel
Orion Star A321 pH meter Thermo Scientific STARA3210 pH meter
Orion micro pH probe Thermo Scientific 8220BNWP micro pH probe
N-(2-Hydroxyethyl)-Piperazine-N'-(2-Ethanesulfonic Acid) VWR VWRB30487 HEPES, Free Acid
Sodium Chloride VWR BDH8014-2.5KGR NaCl
Tubing Allied Wire & Cable TFT-200-24 N Internal Diameter: 0.020-0.026 inches (0.051-0.066 cm); Wall Thickness: 0.010 inches (0.025 cm); Flexible Polytetrafluoroethylene Thin-Wall Tubing; Natural Color
Nitrogen Gas – Industrial Praxair N/A Local Provider
Oxygen Gas – Industrial Praxair N/A Local Provider
Liquid Nitrogen Praxair N/A Local Provider

References

  1. Di Paolo, G., De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 443 (7112), 651-657 (2006).
  2. Shewan, A., Eastburn, D. J., Mostov, K. Phosphoinositides in cell architecture. Cold Spring Harb Perspect Biol. 3 (8), a004796 (2011).
  3. Picas, L., Gaits-Iacovoni, F., Goud, B. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction. F1000Res. 5, (2016).
  4. Lystad, A. H., Simonsen, A. Phosphoinositide-binding proteins in autophagy. FEBS Lett. 590 (15), 2454-2468 (2016).
  5. Balla, T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol Rev. 93, 1019-1137 (2013).
  6. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol. 9 (2), 99-111 (2008).
  7. Kutateladze, T. G. Translation of the phosphoinositide code by PI effectors. Nat Chem Biol. 6 (7), 507-513 (2010).
  8. Harlan, J. E., Hajduk, P. J., Yoon, H. S., Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature. 371 (6493), 168-170 (1994).
  9. Garcia, P., et al. The pleckstrin homology domain of phospholipase C-delta 1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. 생화학. 34 (49), 16228-16234 (1995).
  10. Lemmon, M. A., Ferguson, K. M., O’Brien, R., Sigler, P. B., Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 92 (23), 10472-10476 (1995).
  11. Flesch, F. M., Yu, J. W., Lemmon, M. A., Burger, K. N. Membrane activity of the phospholipase C-delta1 pleckstrin homology (PH) domain. Biochem J. 389, 435-441 (2005).
  12. Narayan, K., Lemmon, M. A. Determining selectivity of phosphoinositide-binding domains. Methods. 39 (2), 122-133 (2006).
  13. Scott, J. L., Musselman, C. A., Adu-Gyamfi, E., Kutateladze, T. G., Stahelin, R. V. Emerging methodologies to investigate lipid-protein interactions. Integr Biol (Camb). 4 (3), 247-258 (2012).
  14. Dowler, S., Currie, R. A., Downes, C. P., Alessi, D. R. DAPP1: A dual adaptor for phosphotyrosine and 3-phosphoinositides. Biochem J. 342, 7-12 (1999).
  15. He, J., et al. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain. J Biol Chem. 286 (21), 18650-18657 (2011).
  16. Ceccarelli, D. F., et al. Non-canonical interaction of phosphoinositides with pleckstrin homology domains of Tiam1 and ArhGAP9. J Biol Chem. 282 (18), 13864-13874 (2007).
  17. Huang, S., Gao, L., Blanchoin, L., Staiger, C. J. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell. 17 (4), 1946-1958 (2006).
  18. Yu, J. W., et al. Genome-eide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol Cell. 13 (5), 677-688 (2004).
  19. Jung, H., Robison, A. D., Cremer, P. S. Detecting protein-ligand binding on supported bilayers by local pH modulation. J Am Chem Soc. 131 (3), 1006-1014 (2009).
  20. Huang, D., Zhao, T., Xu, W., Yang, T., Cremer, P. S. Sensing small molecule interactions with lipid membranes by local pH modulation. Anal Chem. 85 (21), 10240-10248 (2013).
  21. Saxena, A., et al. Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1. J Biol Chem. 277 (51), 49935-49944 (2002).
  22. Knödler, A., Mayinger, P. Analysis of phosphoinositide-binding proteins using liposomes as an affinity matrix. Biotechniques. 38 (6), 858-862 (2005).
  23. Baumann, M. K., Swann, M. J., Textor, M., Reimhult, E. Pleckstrin homology-phospholipase C-delta1 interaction with phosphatidylinositol 4,5-bisphosphate containing supported lipid bilayers monitored in situ with dual polarization interferometry. Anal Chem. 83 (16), 6267-6274 (2011).
  24. Saliba, A. E., et al. A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nat Methods. 11 (1), 47-50 (2014).
  25. Arauz, E., Aggarwal, V., Jain, A., Ha, T., Chen, J. Single-molecule analysis of lipid-protein interactions in crude cell lysates. Anal Chem. 88 (8), 4269-4276 (2016).
  26. Best, Q. A., Xu, R., McCarroll, M. E., Wang, L., Dyer, D. J. Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH. Org Lett. 12 (14), 3219-3221 (2010).
  27. Lee, J., Choi, K. H., Yoo, K. Innovative SU-8 lithography techniques and their applications. Micromachines. 6 (1), 1-18 (2014).
  28. Poyton, M. F., Sendecki, A. M., Cong, X., Cremer, P. S. Cu(2+) binds to phosphatidylethanolamine and increases oxidation in lipid membranes. J Am Chem Soc. 138 (5), 1584-1590 (2016).
  29. Karasek, P., Grym, J., Roth, M., Planeta, J., Foret, F. Etching of glass microchips with supercritical water. Lab Chip. 15 (1), 311-318 (2015).
  30. Thomas, M. S., et al. Print-and-peel fabrication for microfluidics: what’s in it for biomedical applications?. Ann Biomed Eng. 38 (1), 21-32 (2010).
  31. Waheed, S., et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip. 16 (11), 1993-2013 (2016).
  32. Axmann, M., Schutz, G. J., Huppa, J. B. Single molecule fluorescence microscopy on planar supported bilayers. J Vis Exp. (105), e53158 (2015).
  33. Barenholz, Y., et al. A simple method for the preparation of homogeneous phospholipid vesicles. 생화학. 16 (12), 2806-2810 (1977).
  34. Castellana, E. T., Cremer, P. S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports. 61 (10), 429-444 (2006).
  35. Hamai, C., Yang, T., Kataoka, S., Cremer, P. S., Musser, S. M. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophys J. 90 (4), 1241-1248 (2006).
  36. Tero, R. Substrate effects on the formation process, structure and physicochemical properties of supported lipid bilayers. Materials. 5 (12), 2658-2680 (2012).
  37. Ferguson, K. M., Lemmon, M. A., Schlessinger, J., Sigler, P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell. 83 (6), 1037-1046 (1995).
  38. Simonsson, L., Hook, F. Formation and diffusivity characterization of supported lipid bilayers with complex lipid compositions. Langmuir. 28 (28), 10528-10533 (2012).
  39. Cong, X., Poyton, M. F., Baxter, A. J., Pullanchery, S., Cremer, P. S. Unquenchable surface potential dramatically enhances Cu(2+) binding to phosphatidylserine lipids. J Am Chem Soc. 137 (24), 7785-7792 (2015).
  40. Robison, A. D., et al. Polyarginine interacts more strongly and cooperatively than polylysine with phospholipid bilayers. J Phys Chem B. 120 (35), 9287-9296 (2016).
  41. Robison, A. D., Huang, D., Jung, H., Cremer, P. S. Fluorescence modulation sensing of positively and negatively charged proteins on lipid bilayers. Biointerphases. 8 (1), 1 (2013).
  42. Tabaei, S. R., et al. Formation of cholesterol-rich supported membranes using solvent-assisted lipid self-assembly. Langmuir. 30 (44), 13345-13352 (2014).
  43. Johnson, S. J., et al. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 59 (2), 289-294 (1991).
  44. Koenig, B. W., et al. Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon single crystal. Langmuir. 12 (5), 1343-1350 (1996).
  45. Tanaka, M., Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature. 437 (7059), 656-663 (2005).
  46. Renner, L., et al. Supported lipid bilayers on spacious and pH-responsive polymer cushions with varied hydrophilicity. J Phys Chem B. 112 (20), 6373-6378 (2008).
  47. Wagner, M. L., Tamm, L. K. Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J. 79 (3), 1400-1414 (2000).
  48. Pace, H., et al. Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes. Anal Chem. 87 (18), 9194-9203 (2015).
  49. Braunger, J. A., Kramer, C., Morick, D., Steinem, C. Solid supported membranes doped with PIP2: Influence of ionic strength and pH on bilayer formation and membrane organization. Langmuir. 29 (46), 14204-14213 (2013).
  50. Paridon, P. A., de Kruijff, B., Ouwerkerk, R., Wirtz, K. W. Polyphosphoinositides undergo charge neutralization in the physiological pH range: A 31P-NMR study. Biochim Biophys Acta. 877 (1), 216-219 (1986).
  51. Liu, C., Huang, D., Yang, T., Cremer, P. S. Monitoring phosphatidic acid formation in intact phosphatidylcholine bilayers upon phospholipase D catalysis. Anal Chem. 86 (3), 1753-1759 (2014).
  52. Saad, J. S., et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A. 103 (30), 11364-11369 (2006).
  53. Hsu, N. Y., et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 141 (5), 799-811 (2010).
  54. Del Campo, C. M., et al. Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22 (3), 397-408 (2014).
  55. Kolli, S., et al. Structure-function analysis of vaccinia virus H7 protein reveals a novel phosphoinositide binding fold essential for poxvirus replication. J Virol. 89 (4), 2209-2219 (2015).
  56. Cho, N. J., et al. Phosphatidylinositol 4,5-bisphosphate is an HCV NS5A ligand and mediates replication of the viral genome. Gastroenterology. 148 (3), 616-625 (2015).
check_url/kr/55869?article_type=t

Play Video

Cite This Article
Shengjuler, D., Sun, S., Cremer, P. S., Cameron, C. E. PIP-on-a-chip: A Label-free Study of Protein-phosphoinositide Interactions. J. Vis. Exp. (125), e55869, doi:10.3791/55869 (2017).

View Video